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Abstract

Analytical Modeling of Medium Access Control Protocols in Wireless Networks

by

Marcelo Menezes de Carvalho

A new modeling framework is introduced for the analytical study of medium ac-

cess control (MAC) protocols operating in multihop wireless ad hoc networks, i.e., wireless

networks characterized by the lack of any pre-existent infrastructure and where participating

devices must cooperatively provide the basic functionalities that are common to any com-

puter network. The proposed modeling framework focuses on the interactions between the

physical (PHY) and MAC layers, and on the impact that each node has on the dynamics of

every other node in the network. To account for the effects of both cross-layer interactions

and the interference among all nodes, a novel linear model is introduced with which topol-

ogy and PHY/MAC-layer aspects are naturally incorporated in what we define as interference

matrices. A key feature of the model is that nodes can be modeled individually, i.e., it al-

lows a per-node setup of many layer-specific parameters. Moreover, no spatial probability

distribution or special arrangement of nodes is assumed; the model allows the computation of

individual (per-node) performance metrics for any given network topology and radio channel

model.

To show the applicability of our modeling framework, we model wireless ad hoc

networks that operate according to the IEEE 802.11 standard. To accomplish this, we present

a comprehensive analytical modeling of the IEEE 802.11 and the derivation of many perfor-



mance metrics of interest, such as delay, throughput, and energy consumption.

Following recent advances in communication technologies, we also investigate the

use of multiple antenna elements in both ends of the wireless link to conduct the first analyt-

ical modeling of wireless ad hoc networks that considers the impact of realistic antenna-gain

patterns on network performance. As such, our modeling approach allows the study of ad

hoc networks in which nodes are equipped with directional antennas, i.e., systems of antennas

that are able to transmit/receive energy over intended directions. This modeling capability

stands out from all previous analytical models, which have only dealt with omnidirectional or

over-simplified antenna gain patterns, and which have not addressed the specific mechanisms

of the MAC protocols used (e.g., backoff mechanisms).

Lastly, we present the first analytical model for wireless ad hoc networks equipped

with multiple-input multiple-output (MIMO) radios enabled with space-time coding (STC)

that considers the impact of the underlying radio-based topology. In particular, we consider

the space-time block coding (STBC) technique known as the ”Alamouti scheme.” We derive

the effective signal-to-interference-plus-noise density ratio (SINR) of the Alamouti scheme

under multiple access interference (MAI), and we propose the moment generating function

(MGF) method to derive closed-form expressions for its symbol error probability under dif-

ferent modulation schemes and when fading paths are independent but not necessarily iden-

tically distributed. We apply the Alamouti scheme to IEEE 802.11 ad hoc networks with

different antenna system configurations and compare their performance with respect to the

basic single-input-single-output (SISO) system.
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Chapter 1

Introduction

In the dawn of a new millennium, we have witnessed an explosive growth of information and

communication technologies (ICTs) that have ignited profound changes in the way society

will evolve in the years to come. The catalytic effect that ICTs have on the development of

modern society is undeniable and, to attest to this fact, the importance of ICTs has been ex-

plicitly acknowledged in the elaboration of the Millennium Development Goals [128], which

constitute the world’s targets for reducing extreme poverty in its many dimensions in the near

future. The eighth goal—developing a global partnership for development—proposes a means

of achieving the other seven goals, which vary from eradication of extreme poverty and hunger

to the achievement of universal primary education. Target 18 of Goal 8 calls upon the Decla-

ration’s adherents to: “In cooperation with the private sector, make available the benefits of

new technologies, especially information and communication technologies.” In other words,

the Millennium Development Goals acknowledge ICTs as important tools to achieve its over-

all goals, and believe that ICTs can help alleviate poverty, improve the delivery of education

1



and health care, make governments more accessible and accountable to people, etc. Following

the declaration of the Millennium Development Goals, the World Summit on the Information

Society (WSIS) approved the Geneva Declaration of Principles [137], where it expresses its

commitment to harness the potential of ICTs in the promotion of the Millennium Development

Goals.

The importance attributed to ICTs in the development of society has certainly been

fueled by the widespread growth of the Internet and mobile wireless communications in the

past few decades. Today, the International Telecommunications Union (ITU) considers the

level of access to these two technologies as one of the primary indicators of ICT availability

in any country [66]. According to the ITU, almost every country in the world had a direct

connection to the Internet by the turn of the new millennium and, in the end of 2001, over

90 per cent of the countries already had a mobile network, with almost 100 countries having

more mobile than fixed telephone subscribers [65]. Although this represents an impressive

achievement, access levels to ICTs vary among and within countries, creating the so-called

“digital divide” between those with high and those with low access levels [66]. Today, the

digital divide is the biggest challenge to be faced and, to reduce it, the ITU points to mobile

wireless communications as the “missing link,” reaffirming its belief on the potential of this

technology by recognizing that “Mobile has raised access to communications to new levels

(...) Policy makers must look to mobile as a way of achieving social policy goals” [65].

Ultimately, wireless communications can help not only to eliminate the digital di-

vide, but also to realize the vision of ubiquitous and pervasive computing originally articu-

lated by Mark Weiser [104, 134]. In his vision, Mark Weiser called for a new way of thinking
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about computers in the world, one that takes into account the natural human environment and

allows the computers themselves “to vanish into the background,” in a way that computers

become so seamlessly integrated in our lives that we cease to be aware of them. In fact, such

“invisibility” is meant to happen not only in the metaphoric sense, with the development of

user-friendly, task-oriented, intuitive computers, software and interfaces, but also in the strict

sense, with the advent of small intelligent devices ubiquitously embedded in the physical

world and globally connected through the Internet. To support this trend, a number of key

technologies have emerged recently in the field of embedded systems. Most prominently, sig-

nificant advances have been made in the fields of micro-electro-mechanical systems (MEMS)

technology, nanotechnology, and sensor technology. In the future, embedded devices are ex-

pected to interact with each other to add intelligence to environments and create the so-called

“smart spaces” [39]. Ultimately, the vision of ubiquitous and pervasive computing will lead

to the ability of having seamless and transparent access to communications and computing

services anytime, anywhere, on a global basis.

The inherent nature of ubiquitous and pervasive computing/communications de-

mands an extremely flexible infrastructure to support a multitude of interconnections among

highly heterogeneous devices. This demand for high flexibility makes wireless networks the

easiest solution for the interconnection of ubiquitous devices [27]. Currently, however, most

of the deployed wireless networks have a fixed infrastructure. By far, the most successful

application of wireless networking has been the cellular telephone system, in which (mobile)

telephone users communicate directly to a fixed and central base station that covers a certain

geographic area and is responsible for most of the intelligence and control within the network.

3



Despite its advantages, the cellular concept (or infrastructure-based wireless networks, to be

more general), has its drawbacks: it is of relatively low bandwidth, similar in many ways

to wired dial-up access, and it generally takes time and potentially high cost to set up the

necessary infrastructure [56]. Moreover, even if costs were reduced and efficiency improved,

infrastructure-based networks may not always be possible, appropriate, or even desirable in

many of the envisaged scenarios for ubiquitous and pervasive computing/communications.

To fulfill the vision of ubiquitous computing/communications, wireless networks

need to evolve beyond the current infrastructure-type of networks. Fortunately, because of

significant advances in hardware technology in the past decades—most notably in the areas

of processing capability and storage capacity—it has now been possible to include more “in-

telligence” into smaller devices with significant reductions in power consumption. As a con-

sequence, the deployment of wireless networks without any pre-existent infrastructure—the

so-called wireless ad hoc networks—are now becoming possible.

In a wireless ad hoc network, all participating devices must cooperatively provide

the “core” functionality that is usually “a given” in an infrastructure network, i.e., each “node”

executes functions of routers, switches, clients, and servers. Given this characteristic, wire-

less ad hoc networks can be formed dynamically, “on the fly,” by a group of nodes using

the readily-available wireless channel, and without any centralized control or administration.

Therefore, no pre-infrastructure is required to enable the exchange of information among

users’ devices. In case the devices are too distant apart that they cannot communicate directly

to each other (due to signal power attenuation with distance and other phenomena typical of

wireless channels), the packets can be forwarded via intermediate devices that relay the pack-
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ets on a hop-by-hop basis. Depending on the application or the scenario, nodes in a wireless

ad hoc network may be mobile and free to organize themselves arbitrarily. As a consequence,

intermittent connectivity may happen and the network’s topology may change rapidly and

unpredictably. In those cases, routes to destination nodes may need to be computed dynami-

cally and updated frequently. In addition, nodes may join or leave the network anytime, with

their location and availability constrained by the characteristics of the surrounding wireless

medium. Figure 1.1 shows an example of a wireless ad hoc network.

Figure 1.1: Example of a wireless ad hoc network.

The concept of wireless ad hoc networks is not new. Initial interest in this type of

network emerged within the military arena with the Packet Radio Network (PRNet) project

funded by the Defense Advanced Research Projects Agency (DARPA) in 1972, followed

by the Survivable Radio Networks (SURAN) project in 1983, and DARPA’s Global Mobile

(GloMo) Information Systems program launched in 1994 [45]. In the commercial arena, how-

ever, the introduction of the Ethernet technology in the 1970’s [82] for wired interconnection
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of local area networks (LANs) kept the interest of companies away from wireless networking.

Ethernet data rates were far higher than those provided by any radio-based technology at that

time. Interest in the development of commercial products for wireless computer networks

started to grow only in 1985, when the Federal Communications Commission (FCC) autho-

rized the public use of the Industrial, Scientific, and Medical (ISM) frequency band for the

development of wireless LAN products. The main advantage of the ISM band for the deploy-

ment of WLANs is the fact that no FCC license is required to operate in this band, as opposed

to the frequency bands used in cellular telephone systems, whose license fees are extremely

high. Unfortunately, the first wireless LAN products launched into the market had very poor

performance [56]. Their poor performance, coupled with lack of standardization, security

problems, and high prices (compared to wired Ethernet cards at that moment), resulted in

weak sales. Thus, it was not until recently that commercial interest in radio technologies for

wireless networking beyond cellular systems really took off. It all began in 1997, when the In-

stitute of Electrical and Electronics Engineers (IEEE) released the first standard for WLANs,

named IEEE 802.11, supporting data rates of up to 2 Mbps [64]. Later, in 1999, the IEEE

task group 802.11b released an extension to support data rates of up to 11 Mbps. This exten-

sion, commonly referred to as Wireless Fidelity (Wi-Fi), became an instant success, igniting

a true revolution in the segment of WLANs. Following this success, several IEEE 802.11 task

groups (designated by the letters ‘a’, ‘e’, ‘g’, etc.) have been created to extend and improve

the IEEE 802.11 standard in many aspects, which vary from the support to quality of service

(QoS) features to higher data rates. Today, WLANs based on the IEEE 802.11 standard have

become the preferred method of Internet access in many homes, offices, airports, libraries, and
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many other environments because of their convenience and freedom from wires.

The importance and attractiveness of the IEEE 802.11 comes from its support for

two operational modes: the infrastructure mode and the ad hoc mode. The infrastructure mode

is similar to cellular infrastructure-based networks, where a node acts as the access point (AP)

for other nodes to have access to the Internet. This is the most common operational mode used

to build the so-called “Wi-Fi hotspots” for Internet access. Nevertheless, it is the ad hoc mode

of operation that has caught the largest attention within the research community working in

the field of wireless ad hoc networks. This is because the IEEE 802.11 standard is a platform

that can be used to implement both single-hop and multi-hop ad hoc networks, and it gives

specifications for two of the fundamental layers in the protocol stack of any wireless ad hoc

network: the physical (PHY) layer and the medium access control (MAC) layer. Figure 1.2

shows the locations of the PHY and the MAC layers on the protocol stack defined by the

International Standard Organization’s Open System Interconnect (ISO/OSI) model.

Figure 1.2: Location of the PHY and the MAC layers on the protocol stack defined by the ISO/OSI
model. The MAC layer is considered as a sub-layer of the LINK layer.
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The PHY layer defines the characteristics of, and methods of transmitting and re-

ceiving data through the medium that interconnects the nodes of the network. Therefore, it

defines a number of parameters and procedures such as the bandwidth and channels to be

used, signal modulation schemes, transmit power levels, and error correcting/detecting codes,

to name a few. The PHY layer is also responsible for mapping the information bits received

from the upper network layers into a framing format suitable for transmission over the phys-

ical medium and, correspondingly, for the de-mapping operation of the information received

over the medium.

The medium access control (MAC) protocol, on the other hand, is a major com-

ponent of many multiuser communication systems in which users transmit information over

a common, shared channel (which is the case in wireless ad hoc networks). Thus, the main

task of the MAC layer is to enable nodes in the network to determine their right to access the

available channel(s), while attempting to enforce a fair and efficient usage of the channel(s).

The establishment of such access rights is far more difficult in a wireless ad hoc network than

in a wired long haul network or a wired local area network (LAN), because the radio channels

of an ad hoc network are broadcast in nature, and radio connectivity is such that the topology

of an ad hoc network is not as clearly defined as with point-to-point wired networks. Unlike

wired channels that are fairly stationary and predictable, radio channels are extremely random,

and connectivity between two nodes depends on many factors, such as the radio frequency in

use, power of the transmitters, terrain, antenna type, transmitter/receiver distance, multipath

fading, and the like. Furthermore, the quality of a radio link depends on the transmission

activity of all other nodes in the entire system, whose aggregate signal powers can severely
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degrade the signal-to-noise ratio (SNR) at a particular receiver and, consequently, compromise

the successful reception of any on-going packet transmission. Last, but not least, thermal and

other background noise sources can also contribute to the failure of a packet reception at a

given receiver.

Consequently, the performance analysis of a MAC protocol in an ad hoc network

must consider the interactions between the PHY and the MAC layers. In fact, a cross-layer

perspective to both analysis and design of multiaccess communications has been brought to

attention with recent advances in wireless communications. As pointed out by Gallager [49]

and later by Ephremides and Hajeck [36], the fundamental challenge lies in the choice of a

proper model that interfaces the physical layer with the upper network layers. Unfortunately,

the bulk of the published work on ad hoc networks has focused on the modeling of medium

access schemes where ideal channel conditions and unrealistic assumptions are made. Under

the argument of separating the issues strictly related to the protocol operation from the issues

intrinsically related to the physical layer, few studies have attempted to incorporate physical

layer aspects directly into the behavior of the protocol, i.e., explicitly modeling the impact

of the physical layer on the dynamics of the MAC protocol. Perhaps, more importantly, no

attempt has ever been made to include not only the physical-layer aspects explicitly into the

model, but also to include the interdependencies among nodes under a radio-based topology

in a multihop ad hoc network. Although convenient for analytical modeling, it is not true that

only the transmissions from “one hop” neighbors of a node can cause interference at the node.

Because of the limitations of existing analytical models for ad hoc networks, many

researchers have opted to study the impact of physical layer on the dynamics of MAC proto-
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cols via discrete-event simulations. However, even with such simulation packages as Qual-

net [105], which are designed to scale with the number of nodes in the network, obtaining sim-

ulation results that are statistically meaningful (by using many seeds) requires hours of simu-

lation time for scenarios corresponding to just a few minutes of simulated time in MANETs

with hundreds of nodes with a given choice of physical-layer parameters. This is clearly not

a promising approach for researchers to gain insight on the impact of multiple physical-layer

parameters on the operation of MAC protocols.

In this dissertation, we introduce a new modeling framework for the analytical study

of any MAC protocol operating in multihop ad hoc networks. The modeling framework we

introduce focuses on the interactions between the PHY and MAC layers, and on the impact that

each node has on the dynamics of every other node in the network. To account for the effects

of both cross-layer interactions and the interference among all nodes, a novel linear model

is introduced with which topology and PHY/MAC-layer aspects are naturally incorporated

in what we define as interference matrices. A key feature of the model is that nodes can

be modeled individually, i.e., it allows a per-node setup of many layer-specific parameters.

Moreover, no spatial probability distribution or special arrangement of nodes is assumed; the

model allows the computation of individual (per-node) performance metrics for any given

network topology and radio channel model.

Because of the importance of the IEEE 802.11 standard in the development of cur-

rent and future wireless ad hoc networks, we illustrate the applicability of our modeling frame-

work through the analytical modeling of wireless ad hoc networks that operate according to

the IEEE 802.11 standard. To accomplish this, we present a comprehensive analytical mod-
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eling of the IEEE 802.11 distributed coordination function (DCF), which corresponds to the

MAC specification for the ad hoc mode of operation. In this dissertation, we investigate the

IEEE 802.11 DCF MAC in both single-hop and multihop scenarios, under ideal and realistic

channel conditions. The study of single-hop scenarios is performed as an important “stepping

stone” for the treatment of the more challenging scenarios oposed by multihop ad hoc net-

works. In contrast to traditional work in the literature, we use a bottom-up modeling approach

to derive a number of performance metrics of interest for the IEEE 802.11 DCF MAC, which

are based on its binary exponential backoff algorithm and the events underneath its operation.

Motivated by recent advances in communication technologies, we also investigate

the use of multiple antenna elements in both ends of the wireless link and provide the first ana-

lytical modeling of wireless ad hoc networks that considers the impact of realistic antenna-gain

patterns on network performance. As such, our modeling approach allows the study of ad hoc

networks in which nodes are equipped with directional antennas, i.e., systems of antennas that

are able to transmit/receive energy over intended directions, as opposed to omnidirectional an-

tennas, which (ideally) radiate or absorb energy equally well along all directions. This mod-

eling capability stands out from all previous analytical models, which have only dealt with

omnidirectional or over-simplified antenna gain patterns, and which have not addressed the

specific mechanisms of the medium access control (MAC) protocols used (e.g., the backoff

mechanism). Using our new analytical modeling framework, which allows the study of dif-

ferent carrier-sensing mechanisms, we model the directional virtual carrier sensing (DVCS)

protocol to validate our analytical model and show its applicability. Our numerical results

show that our new analytical model predicts the results obtained by discrete-event simulation
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very accurately, and does it with a processing time that is orders of magnitude faster than

the time required by simulations. Furthermore, we show that the simplistic “pie slices” used

in prior analytical models for antenna patterns over-estimate the throughput of the protocols

dramatically compared to the results obtained using realistic antenna patterns.

Lastly, we present the first analytical model for wireless ad hoc networks in which

nodes are equipped with multiple-input multiple-output (MIMO) radios and use space-time

coding (STC). In particular, we consider the space-time block coding (STBC) technique

known as the “Alamouti scheme.” We derive the effective signal-to-interference-plus-noise

density ratio (SINR) of the Alamouti scheme and closed-form expressions for its symbol er-

ror probability under different modulation schemes. The impact of the Alamouti scheme on

IEEE 802.11 ad hoc networks is studied by using our new modeling framework and the new

analytical model for the IEEE 802.11 DCF MAC. We apply the Alamouti scheme to differ-

ent antenna system configurations and compare their performance with respect to the basic

single-input-single-output (SISO) IEEE 802.11 DCF MAC.

1.1 Summary of Contributions

More specifically, the main contributions of this dissertation are as follows:

• The development of the first analytical model to compute the first two moments of the

service time experienced by a packet when transmitted in a saturated IEEE 802.11 ad

hoc network [16, 17];

• Modeling and performance evaluation of the impact of fading channels on single-hop
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ad hoc networks operating according to the IEEE 802.11 DCF MAC [18];

• The first analytical model to predict energy consumption in saturated IEEE 802.11

single-hop ad hoc networks under ideal channel conditions [22];

• Development of a new modeling framework for the analytical study of MAC protocols

operating in multihop ad hoc networks. The model focuses on the interactions between

the PHY and the MAC layers, and on the impact that each node has on the dynam-

ics of every other node in the network—all conveniently conveyed through the use of

interference matrices. A key feature of the modeling framework is that nodes can be

modeled individually, i.e., it allows the per-node setup of many layer-specific param-

eters. Moreover, no spatial probability distribution or special arrangement of nodes is

assumed; the framework allows the computation of individual (per-node) performance

metrics for any given network topology and radio channel model [19];

• A new analytical model for the binary exponential backoff algorithm of the IEEE 802.11

DCF MAC based on Markov processes. The new model is the first to include the impact

of errors in both control and data frames, the carrier-sensing mechanism, and the finite-

retry limits of the IEEE 802.11 DCF MAC [20, 21];

• The first analytical modeling of wireless ad hoc networks that considers the impact

of realistic antenna-gain patterns on network performance. In particular, the modeling

approach allows the study of wireless ad hoc networks in which nodes are equipped

with directional antennas, i.e., antennas that are able to transmit/receive energy over

intended directions [21];
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• The first analytical model for wireless ad hoc networks in which nodes are equipped

with multiple-input multiple-output (MIMO) radios and use space-time coding (STC),

i.e., code design techniques that exploit both temporal and spatial dimensions inherent

in the use of multiple spatially-distributed antennas per node [20];

1.2 Related Work

The bulk of the analytical modeling of wireless ad hoc networks has concentrated

on the analysis of MAC protocols in fully-connected segments of networks (e.g., satellite net-

works, cellular networks, or single-hop wireless LANs (WLANs)), because they are simpler

to analyze than multihop networks. The majority of this work has followed the formalism

and assumptions introduced by Abramson [1, 2] for the analysis of the ALOHA protocol,

and by Tobagi and Kleinrock [73, 124] for the analysis of the carrier sense multiple access

(CSMA) protocol. The model typically adopted assumes that all nodes have infinite buffers

and transmissions are scheduled according to independent Poisson point processes. This im-

plies that packets which were either inhibited from being transmitted or were unsuccessfully

transmitted are rescheduled after a “sufficiently long” randomized time out to preserve the

Poisson property (i.e., no correlation between new packet arrivals and their rescheduling).

Packet lengths are exponentially distributed and are independently generated at each trans-

mission attempt (including retransmissions). In many cases, acknowledgments are assumed

to happen instantaneously or, in cases where propagation delay is taken into account, acknowl-

edgment traffic is simply ignored, and periods of collisions are restricted to the propagation

time, after which all other nodes are able to perceive any activity in the channel (through the
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single-hop and perfect-channel assumptions). Regarding the quality of the radio links, they

are generally considered error free, and the event of unsuccessful transmission is restricted

to packet collisions at the receiver. Examples where such assumptions have been made in-

clude [9, 31, 47, 48, 69, 72, 78, 101].

Other works consider physical-layer aspects more explicitly within the context of

single-hop scenarios. Raychauduri [100] analyzed slotted ALOHA with code division; Grone-

meyer and Davis [33] considered spread-spectrum slotted ALOHA with capture due to time of

arrival. Musser and Daigle [84] derived the throughput of pure ALOHA with code division.

Pursley [93] studied the throughput of frequency-hopped spread-spectrum communications

for packet radio networks. In other cases, the error-free link assumption was relaxed and mul-

tipath fading channels where considered while preserving other original assumptions (e.g.,

Poisson scheduling). This is the case in the works by Arnbak and Blitterswijk, who studied

the capacity of slotted ALOHA in Rayleigh-fading channels [5].

More recently, with the advent of the IEEE 802.11 standard for WLANs, a signif-

icant amount of work has been carried out to provide an analytical model for its operation.

However, the vast majority of this effort has considered only single-hop networks under ideal

channel conditions [12, 15, 17, 42, 70]. As far as imperfect channel conditions is concerned,

Hadzi-Velkov and Spasenovski [60, 61] have investigated the impact of capture on the capac-

ity of the IEEE 802.11 in both Rayleigh- and Rician-fading channels. However, no provision

was made to consider a multihop ad hoc network and the interdependencies among the nodes.

Gitman [54] published what is arguably the first paper that actually dealt with a mul-

tihop system. Gitman considered a two-hop centralized network consisting of a large number
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of terminals communicating with a single station via some repeaters located around the sta-

tion. Subsequently, Tobagi [120, 121] considered the same topology to compute the network

capacity and throughput-delay characteristics of both slotted ALOHA and CSMA. However, it

was not until the work by Boorstyn et al. [13] that a methodology for the steady-state through-

put analysis of a multihop packet radio network was introduced. Based on assumptions like

independent Poisson scheduling at each node, exponentially-distributed packet lengths, zero

propagation delay, and instantaneous acknowledgments, Boorstyn et al. were able to repre-

sent a CSMA multihop network as a continuous-time Markov chain, with the state at each

time being the set of transmitting nodes. This analysis lead to a product-form solution and

an iterative procedure was used to obtain the scheduling rates corresponding to given desired

link traffic rates. The complexity of the algorithm by Boorstyn et al., although exponential in

general, grows quadratically or cubically with the number of links for most networks on the

order of 100 nodes. Tobagi and Brazio [123] considered the same model and observed that it

is applicable to ALOHA and C-BTMA (a variant of BTMA). They also observed that not all

schemes could be modeled by simply tracking the set of transmitting nodes. Shepard [107]

considered fundamental physical-layer aspects in the modeling of large, dense packet-radio

networks. Although Shepard’s model considered aspects closer to the underlying physics of

radio communications, it did not target the modeling of the interaction among the nodes and

their interdependencies.

Chhaya and Gupta provided one of the first analytical models of the IEEE 802.11

DCF that considered a multihop scenario and where both capture and hidden terminals were

taken into account [26]. Like prior work, however, all nodes were assumed to transmit inde-
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pendently according to some Poisson point process. Moreover, in their numerical results, they

considered that all individual scheduling processes offered the same load, regardless of net-

work topology, therefore ignoring the many interdependencies among nodes and their impact

on individual scheduling rates. Subsequently, Wang and Garcia-Luna-Aceves [130] provided

a model for the saturation throughput of collision avoidance protocols that included the IEEE

802.11 DCF. Their modeling approach is based on the work by Wu and Varshney [139], in

which nodes are spatially distributed according to a two-dimensional Poisson distribution, and

two Markov models are used to represent the channel around a node and its activity. To ob-

tain the Markov models, the channel is modeled as a circular region in which nodes within

the region can communicate with each other, while weak interactions are assumed with nodes

outside this region.

Another important venue of research emerged in the last few years that focuses

on the problem of network capacity. The main objective of this line of work consists of

finding fundamental limits on achievable communication rates in wireless networks. In such

a problem formulation, a set of rates between source-destination pairs is called achievable

if there exists a network control policy that guarantee those rates. The closure of the set

of achievable rates is the capacity region of the network. In their seminal work, Gupta and

Kumar [59] considered a joint optimization of transmission powers and schedules, showing

that the maximum per-node throughput scales proportionally to 1/
√
n, where n is the number

of nodes. Subsequent works have studied network capacity from various viewpoints (e.g.,

[52,58,83,92,126,143]) while others considered the joint optimization of resource allocation

and scheduling [46, 50], or the optimal cross-layer design of PHY and MAC layers [79, 125].
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Despite the undeniable importance of such studies, a gap still remains on the modeling of

wireless ad hoc networks under specific (optimally designed or not) MAC and PHY layers,

in a way that the impact of their interactions and the interdependence among the nodes in a

multihop environment are all taken into account in the performance evaluation of each node.

1.3 Organization of the Dissertation

Chapter 2 introduces the analytical model to compute the average service time and

jitter experienced by a packet when transmitted in a saturated IEEE 802.11 ad hoc network.

The model we introduce is general enough to be applied to any IEEE 802.11 wireless ad hoc

network where the channel state probabilities driving a node’s backoff operation are known.

In particular, we apply the model to saturated single-hop ad hoc networks under ideal channel

conditions.

In Chapter 3 we introduce aspects of the physical layer directly into the dynamics of

the events underneath the operation of the IEEE 802.11 DCF MAC binary exponential backoff

algorithm. To show its application, we study the impact of frequency-selective, slowly time-

variant Rician fading channels on the performance of saturated IEEE 802.11 single-hop ad

hoc networks.

Chapter 4 presents the first analytical model to predict energy consumption in satu-

rated IEEE 802.11 single-hop ad hoc networks under ideal channel conditions. In contrast to

previous work that attempted to characterize the energy consumption of IEEE 802.11 cards

in isolated, contention-free channels (i.e., single sender/receiver pair), we investigate the ex-

treme opposite case, i.e., when nodes need to contend for channel access under saturation
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conditions.

Chapter 5 contains the main contribution of this dissertation, which is the develop-

ment of a new modeling framework for the analytical study of any medium access control

protocol operating in multihop ad hoc networks. The modeling framework focuses on the

interactions between the PHH and MAC layers, and on the impact that each node has on the

dynamics of every other node in the network—all conveniently conveyed through the use of

interference matrices.

Chapter 6 shows the application of the general modeling framework developed in

Chapter 5 to the modeling of wireless ad hoc networks that operate according to the IEEE

802.11 DCF. In particular, we introduce a new analytical model for the operation of the IEEE

802.11 DCF MAC based on Markov chains. Due to the new Markov model, we extend the

performance metrics relative to the IEEE 802.11 and validate our analytical model against

numerical results driven from discrete-event simulations.

Chapter 7 contains the analytical modeling of wireless ad hoc networks that con-

siders the impact of realistic antenna-gain patterns on network performance. In particular, we

apply the model to the study of ad hoc networks in which nodes are equipped with directional

antennas.

In Chapter 8, we present the analytical modeling of wireless ad hoc networks in

which nodes are equipped with multiple-input multiple-output (MIMO) radios and use space-

time coding (STC) as the signaling technique of choice.

Finally, in Chapter 9, we present the conclusions of this dissertation, and we provide

directions for future work.
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Chapter 2

Delay Analysis of IEEE 802.11 in

Single-Hop Ad Hoc Networks

In this chapter, we present an analytical model to compute the average service time and jitter

experienced by a packet when transmitted in a saturated IEEE 802.11 ad hoc network. In con-

trast to traditional work in the literature, in which a distribution is usually fitted or assumed,

we use a bottom-up approach and build the first two moments of the service time based on the

IEEE 802.11 binary exponential backoff algorithm and the events underneath its operation.

Our model is general enough to be applied to any type of IEEE 802.11 wireless ad hoc net-

work where the channel state probabilities driving a node’s backoff operation are known. We

apply our model to saturated single-hop ad hoc networks under ideal channel conditions. We

validate our model through extensive simulations and conduct a performance evaluation of a

node’s average service time and jitter for both direct sequence and frequency-hopping spread

spectrum physical layers.
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2.1 Introduction

During the past few years we have witnessed an ever-growing interest in wireless

technologies and their application to portable devices. As the number of users of such tech-

nologies has increased, the demand for real-time traffic and delay-sensitive applications has

become more critical. Along the efforts to satisfy such needs, standards for wireless local

area networks (WLANs) have been proposed, and the IEEE 802.11 medium access control

(MAC) protocol [64] is the de facto standard and the most widely used protocol nowadays. In

the IEEE 802.11, the main mechanism to access the medium is the distributed coordination

function (DCF), which is a random access scheme based on the carrier sense multiple access

with collision avoidance (CSMA/CA). The DCF provides two access schemes: the default,

called basic access mechanism, and an optional, four-way handshake scheme. The standard

also defines the optional point coordination function (PCF), which is a centralized MAC pro-

tocol that uses a point coordinator to determine which node has the right to transmit. The PCF

suppports collision free and time bounded services. However, because the PCF cannot be used

in multihop or single-hop ad hoc networks, the DCF is the access network widely assumed,

which implies varying delays for all traffic. Curiously, the majority of the work on analyzing

the performance of IEEE 802.11 DCF has concentrated on its throughput [12,15,26,130] and

not much attention has been given to analyzing its delay.

In this chapter, we provide an analytical model to compute the average service time

and jitter experienced by a packet when transmitted in a saturated IEEE 802.11 ad hoc net-

work. By “service time” we refer to the total time interval between the transmissions of two

consecutive data packets from a node’s ouput queue (note that we are dealing with saturated
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networks). Accordingly, by “jitter” we refer to the variation of the service time with respect to

its average value. More specifically, we refer to the square root of the mean squared difference

between the service time and its average value, i.e, the standard deviation.

In contrast to traditional work in the literature, in which a distribution is usually fit-

ted or assumed [15, 42, 48, 73], we use a bottom-up approach and build the first two moments

of a node’s service time based on the IEEE 802.11 binary exponential backoff algorithm and

the events underneath its operation. The strength of our model relies on the fact that it can be

applied to many network scenarios. The key to its successful application is the knowledge of

the channel state probabilities driving a node’s backoff operation. Here, we apply our model

to saturated, single-hop ad hoc networks with ideal channel conditions, operating under the

four-way handshake mechanism of the DCF. For this case, the channel state probabilities we

obtain are based on the work by Bianchi [12], which provides a set of nonlinear equations that

relates a packet’s collision probability with its transmission probability (in steady-state). We

linearize Bianchi’s model and find simple equations to these quantities. The reason for our

approximation is twofold: ease of computation and the need to better understand the impact

of system parameters on channel and system probabilities (something that is not so clear un-

der a nonlinear system of equations). We validate both our model and the linearized system

through extensive simulations and conduct a performance evaluation of a node’s average ser-

vice time and jitter for the direct sequence spread spectrum (DSSS) and frequency-hopping

spread spectrum (FHSS) physical layers under the same scenario. We investigate their per-

formance as we vary such parameters as initial contention window size, slot time size, packet

size, and maximum backoff stage.
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The remainder of the chapter is organized as follows. Section 2.2 briefly reviews the

DCF mechanism. Section 2.3 presents our analytical model. Following that, in Section 2.4,

we validate our model through simulations. Section 2.5 presents a performance evaluation of

both DSSS and FHSS physical layers. In Section 2.6 we present our conclusions.

2.2 The IEEE 802.11 Distributed Coordination Function (DCF)

The DCF describes two techniques for packet transmission: the default, a two-way

handshake scheme called basic access mechanism, and an optional four-way handshake mech-

anism. In the basic access mechanism, a node monitors the channel to determine if another

node is transmitting before initiating the transmission of a new packet. If the channel is idle

for an interval of time that exceeds the distributed interframe space (DIFS), the packet is

transmitted. Otherwise, the node monitors the channel until it is sensed idle for a DIFS in-

terval, when it then generates a random backoff interval for an additional deferral time before

transmitting. This collision avoidance feature of the protocol intends to minimize collisions

during contention among multiple nodes. In addition, to avoid channel capture, a node must

wait a random backoff time between two consecutive new packet transmissions, even if the

medium is sensed idle in the DIFS time.

DCF has a discrete-time backoff timer. The backoff timer is decremented only when

the medium is idle and it is frozen when the medium is sensed busy. After a busy period, the

decrementing of the backoff timer resumes only after the medium has been free longer than a

DIFS period. A transmission takes place when the timer zeros out. The slot size of the backoff

timer is denoted by σ, and equals the time needed by any node to detect the transmission of a
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packet by any other node. It is, therefore, dependent on the physical layer and accounts for the

propagation delay, the transmit-to-receive turn-around time, and the time to signal the state

of the channel to the MAC layer. At each packet transmission, the backoff time is uniformly

chosen in the range (0,W − 1). The value W is called the contention window and depends on

the number of failed transmissions for a packet, i.e., for each packet queued for transmission,

the contention window W takes an initial value Wmin that doubles after each unsuccessful

packet transmission, up to a maximum of Wmax (the values of Wmin and Wmax are physical-

layer specific). The contention window remains at Wmax for the remaining attempts. This

is the so-called exponential backoff scheme. In the sequel, each attempt to transmit a packet

during the exponential backoff will be referred to as a backoff stage. An ACK is transmitted

by the destination node to signal the successful packet reception. The ACK is immediately

transmitted at the end of the packet, after a period of time called short interframe space (SIFS).

If the transmitting node does not receive the ACK within a specified timeout, or if it detects

the transmission of a different packet on the channel, it reschedules the packet transmission

according to the given backoff rules. Figure 2.1(a) illustrates the basic access mechanism.

The four-way handshake mechanism involves the transmission of the request-to-

send (RTS) and clear-to-send (CTS) control frames prior to the transmission of the actual

data frame. A successful exchange of RTS and CTS frames attempts to reserve the channel

for the time duration needed to transfer the data frame under consideration. The rules for

the transmission of an RTS frame are the same as those for a data frame under the basic

access scheme. After receiving an RTS frame, the receiver responds with a CTS frame after

a SIFS. After the successful exchange of RTS and CTS frames, the data frame can be sent
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Figure 2.1: IEEE 802.11 access methods: (a) Basic Access. (b) RTS/CTS.

by the transmitter after waiting for a SIFS interval. In case a CTS frame is not received

within a predetermined time interval, the RTS is retransmitted following the backoff rules as

specified in the basic access procedures described above. The frames RTS and CTS carry the

information of the length of the packet to be transmitted. This information can be read by any

listening node, which is then able to update a network allocation vector (NAV) containing the

information of the period of time in which the channel will remain busy. Therefore, when a

node is hidden from either the transmitting or the receiving node, by detecting just one frame

among the RTS and CTS frames, it can suitably delay further transmissions to try to avoid

collisions. Figure 2.1(b) illustrates the four-way handshake mechanism, which we simply call

the RTS/CTS mechanism.
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2.3 Analytical Model

In this Section, we present the analytical model for the average service time and

jitter experienced by a packet in a saturated IEEE 802.11 ad hoc network. For this purpose,

we first derive the average service time and jitter as functions of the channel state probabilities.

Following that, we present the computation of the channel state probabilities for the case of a

single-hop ad hoc network under ideal channel conditions.

2.3.1 Service Time Characterization

As mentioned in Section 2.2, once a node goes to backoff, its backoff time counter

decrements according to the perceived state of the channel. If the channel is sensed idle,

the backoff time counter is decremented. Otherwise, it is frozen, staying in this state until

the channel is sensed idle again for a time interval that lasts more than a DIFS interval, at

which time the decrementing operation is resumed. While the backoff timer is frozen, only

two mutually exclusive events can happen in the channel: either a successful transmission

takes place or a packet collision occurs. Therefore, if we denote the three possible events a

node can sense during its backoff by Es = {successful transmission}, Ei = {idle channel},

and Ec = {collision}, each of the time intervals between two consecutive backoff counter

decrements, which we call “backoff steps”, will contain one of these three mutually exclusive

events. In other words, during a node’s backoff, the j-th “backoff step” will result in either a

collision, a transmission, or the channel being sensed idle. We assume that events in successive

backoff steps are independent, which is a reasonable assumption if the WLAN is relatively

large and if the time a node spends on collision resolution is about the same as the time the
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channel is sensed bus due to collisions by noncolliding nodes. In the DCF, a node finds out that

a collision has taken place if it does not receive the acknowledgment to its transmission after a

certain timeout (the ACK Timeout in the basic access mechanism and the CTS Timeout in the

RTS/CTS mechanism). In other words, if a collision happens in a backoff step, the colliding

nodes are assumed to go through the collision resolution process in this same backoff step

and, therefore, can be ready for transmission in the following backoff step. This way, we

avoid dependencies on the number of colliding nodes at previous backoff steps.

Given the above considerations, let k denote the backoff stage at which a specific

node is at a certain instant of time, and let nk be the number of backoff time slots ran-

domly chosen at the k-th stage. Assuming that the events Ei, Es, and Ec have probabilities

ps = P{Es}, pi = P{Ei}, and pc = P{Ec}, respectively, and given that these events are in-

dependent and mutually exclusive at each backoff step, then the probability that in nk slots we

have ri “idle slots”, rc “collision slots”, and rc “successful slots” is given by the multinomial

probability distribution

P{r |nk,p} =
nk

ri! rc! rs!
pri

i p
rc
c p

rs
s , (2.1)

where r = [ri rc rs]
T , p = [pi pc ps]

T , pi + pc + ps = 1, and ri + rc + rs = nk. Let

t = [σ tc ts]
T , where σ is the time used when the channel is sensed idle (i.e., one backoff

slot), ts is the average time the channel is sensed busy due to a successful transmission, and tc

is the average time the channel is sensed busy due to a collision in the channel. If we denote

by T k
B(r;nk) the total backoff time spent at the k-th backoff stage when ri slots are idle, rc

slots have collisions, and rs slots have successful transmissions within the randomly chosen
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nk slots, then

T k
B(r;nk) = rT t = σri + tcrc + tsrs. (2.2)

Note that the event E = { ri idle slots, rc collision slots, rs successful slots | nk} is

the same as the event E ′ = {backoff timer zeros out after riσ + rctc + rsts time slots | nk}.

Therefore,

P
{
rT t |nk,p

}
= P{r |nk,p}. (2.3)

From the above results, the average time a node spends at the k-th backoff stage

when nk backoff steps are chosen is simply

T
k
B(nk) = E

{
T k

B(r;nk) |nk

}
= E

{
rT t |nk

}
= E

{
rT |nk

}
t = [nkpi nkpc nkps]

T t

= nk(σpi + tcpc + tsps), (2.4)

where T k
B(nk) indicates that E{T k

B(r;nk) |nk} is a function of the randomly chosen value

nk at the k-th backoff stage. We can finally compute the average backoff time T k
B at the

k-th stage by averaging over nk as follows:

T
k
B =

Wk−1∑

nk=0

T
k
B(nk)P{nk} =

Wk−1∑

nk=0

nk(σpi + tcpc + tsps)

Wk
=
α(Wk − 1)

2
, (2.5)

where α = σpi +tcpc +tsps. This last result is quite intuitive: it simply states that the average

time a node spends at the k-th backoff stage is nothing but the product of the average number

of backoff steps, (Wk − 1)/2, times the average backoff step size α.

We are now able to consider the more general case of the binary exponential backoff

algorithm. Let Rk be a 3 × k matrix whose columns are the k “counting events” ri, i =

1, 2, . . . , k of each backoff stage up to the k-th stage, i.e, Rk = [r1 r2 . . . rk]. We are
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interested in computing P{Rk |nk}, where nk = [n1 n2 . . . nk]
T is a column vector of the

number of time slots chosen in each of the k stages. By our independence assumption, the

events that happen while a node is in its (k − 1)-th backoff stage are independent of the

events that happen while the node is in the k-th stage. Therefore,

P{Rk |nk} = P{r1 |nk} · P{r2 |nk} · . . . · P{rk |nk}

= P{r1 |n1} · P{r2 |n2} · . . . · P{rk |nk}, (2.6)

where the last equality expresses the independence, among stages, on the randomly-chosen

number of backoff steps. Given Rk and nk, the total backoff time can be computed as follows:

TB(Rk;nk) =
k−1∑

i=1

(
rT
i t + tc

)
+ rT

k t =
k∑

i=1

rT
i t + (k − 1)tc, (2.7)

where tc accounts for the time a node spends on collision resolution (according to our previous

remark). We can now compute the average time it takes to successfully transmit a packet after

k backoff stages:

TB(nk) = E{TB(Rk;nk) |nk} =
∑

Rk

[
k∑

i=1

rT
i t + (k − 1)tc

]
P{Rk |nk}

=
k∑

i=1

TB(ni) + (k − 1)tc. (2.8)

By averaging over nk, and observing that the selected number of backoff steps at

a specific backoff stage is independent of the selected number of backoff steps at previous

stages, we have that

TB(k) = E{TB(nk)} =
∑

nk

TB(nk)P{nk} =
∑

nk

TB(nk)
k∏

i=1

P{ni}

=
∑

nk

[
k∑

i=1

TB(ni) + (k − 1)tc

]
k∏

i=1

P{ni} =

k∑

i=1

T
i
B + (k − 1)tc, (2.9)
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where T i
B is given by Eq.(2.5). This last result simply tells us that the backoff time is a

non-linear function of the discrete random variable K of the number of backoff stages a node

has to go through before transmitting a packet successfully. Consequently, the backoff time

probability distribution is the same as the probability distribution of the number of backoff

stages K1, which in turn is directly related to the probability that a packet is succesfully

transmitted at the end of the k-th stage. Therefore, if we let qk be the probability of success

that a packet experiences when it is transmitted at the end of the k-th backoff stage, and if we

make the reasonable assumption that P{packet collides at the k-th stage | packet collided at

the 1st, 2nd, . . . , (k − 1)-th stages} = P{packet collides at the k-th stage} then,

P{K = k} =

[
k−1∏

i=1

(1 − qi)

]
qk. (2.10)

Note that if the probabilities qi are independent of the backoff stage and constant,

i.e., qi = q, ∀ i ∈ N, then we simply have the geometric distribution

P{K = k} = (1 − q)k−1q. (2.11)

For simplicity, let us assume from now on that qi = q, ∀ i ∈ N. In fact, very accurate

throughput results were obtained by Bianchi [12] by assuming a constant and independent

collision probability. Given that, we can now compute the first two moments of the backoff

time TB(k). Let us start with the average backoff time TB . From Eq. (2.9), we have

TB = E{TB(k)} =
∞∑

k=1

TB(k)P{K = k} =
∞∑

k=1

[(
k∑

i=1

T
i
B

)
+ (k − 1)tc

]
(1 − q)k−1q

=
∞∑

k=1

(
k∑

i=1

α

2
Wi

)
(1 − q)k−1q − α

2q
+

(1 − q)

q
tc. (2.12)

1In one-to-one mappings of discrete random variables, if y = g(x) then P{y = y} = P{x = x} [89].
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To compute the first term of Eq. (2.12), we first observe that

Wi =





2i−1Wmin if 1 ≤ i ≤ m

2mWmin if m < i

(2.13)

where m is the “maximum backoff stage”, i.e., the value such that Wmax = 2mWmin. We can

now compute the remaining summation in Eq. (2.12) by splitting it into two terms as follows:

∞∑

k=1

(
k∑

i=1

α

2
Wi

)
(1 − q)k−1q =

m∑

k=1

(
k∑

i=1

α

2
Wi

)
(1 − q)k−1q +

+
∞∑

k=m+1

(
k∑

i=1

α

2
Wi

)
(1 − q)k−1q = S1 + S2. (2.14)

For S1 we have:

S1 =

m∑

k=1

(
k∑

i=1

α

2
Wi

)
(1 − q)k−1q =

αWmin

2

{
2q

[
1 − [2(1 − q)]m

1 − 2(1 − q)

]
+ (1 − q)m − 1

}
.

(2.15)

To find S2, we notice first that, for k = m+ 1,

k∑

i=1

αWi

2
=
αWmin

2

m+1∑

i=1

2i−1 =
αWmin

2

(
2m+1 − 1

)
. (2.16)

Hence, for k = m+ 2,

k∑

i=1

αWi

2
=
αWmin

2

[
m+1∑

i=1

2i−1 +
m+2∑

i=m+2

2m

]
=
αWmin

2

[(
2m+1 − 1

)
+ 2m

]
. (2.17)

In general, for k = m+ γ,

k∑

i=1

αWi

2
=
αWmin

2

[
m+1∑

i=1

2i−1 +

m+γ∑

i=m+2

2m

]
=
αWmin

2

[(
2m+1 − 1

)
+ (γ − 1) · 2m

]
.

(2.18)
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Making the change of variable j = k − (m+ 1) in S2, we have:

S2 =
αWmin

2

∞∑

j=0

[(
2m+1 − 1

)
+ j · 2m

]
(1 − q)j+mq

=
αWmin

2

[(
2m+1 − 1

)
(1 − q)m +

2m(1 − q)m+1

q

]
. (2.19)

By adding S1 to S2 we obtain that the average backoff time equals

TB =
α(Wminβ − 1)

2q
+

(1 − q)

q
tc, (2.20)

where

β =
q − 2m(1 − q)m+1

1 − 2(1 − q)
. (2.21)

Therefore, the average time a packet spends in backoff is simply the average number of backoff

stages it goes through (1/q) times the average time it spends in each backoff stage, added to

the respective average time spent on collision resolution. Note here that the term Wminβ

works as an “effective window size”, scaling the initial contention window size according to

the maximum backoff stage m and the success probability q. In the specific case in which the

contention window is constant at every backoff stage, i.e., T i
B = T ∗ = α(W ∗−1)/2, ∀k ∈ N,

TB(k) is simply TB(k) = kT ∗ + (k − 1)tc. In this case, the average backoff time reduces to

TB =
α(W ∗ − 1)

2q
+

(1 − q)

q
tc (2.22)

If we make m = 0 in Eq. (2.21), i.e., if we fix the contention window size to the initial

contention window size, we have

TB =
α(Wmin − 1)

2q
+

(1 − q)

q
tc. (2.23)
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In the same way, if the contention window size is constant at every stage k, the

variance of the total backoff time is given by

Var {TB(k)} = Var
{

k∑

i=1

T
i
B + (k − 1)tc

}
= Var {kT ∗ + (k − 1)tc} = (T ∗ + tc)

2 (1 − q)

q2

=

[
α(W ∗ − 1)

2
+ tc

]2 (1 − q)

q2
. (2.24)

In the case of the binary exponential backoff algorithm, we need to apply the same

techniques we applied before to squared and cross-product terms. For conciseness, we omit

here the intermediate steps and give the final expression obtained after some algebra:

Var
{
TB(k)

}
=

[
α(Wminγ − 1)

2
+ tc

]2 (1 − q)

q2
, (2.25)

where

γ =

{
[2q2 − 4q + 1 −m(−1 + 2q)q][2(1 − q)]m + 2q2

}

(−1 + 2q)2
,

and, if we make m = 0 we obtain Eq. (2.24). Given the backoff time characterization, the

average service time T equals

T = TB + Ts, (2.26)

where Ts is the time to successfully transmit a packet at the end of the backoff operation.

Because Ts is a constant,

Var{T (k)} = Var{TB(k)}. (2.27)

Note that the service time distribution is the same as that of the backoff time, which, in this

case, is a non-linear function of a geometric random variable with parameter q.
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2.3.2 Channel Probabilities

The model we have just presented is applicable whenever the channel state proba-

bilities p = [pi pc ps]
T driving a node’s backoff operation are known. In this Section, we

compute the values of p for a saturated, single-hop ad hoc network under ideal channel con-

ditions. For this purpose, we rely on the work by Bianchi [12], which provides a model to

evaluate the saturation throughput of the IEEE 802.11 MAC protocol under the hypothesis of

ideal channel conditions (i.e., no hidden terminals and capture). Following Bianchi’s analysis,

we also assume a fixed number of nodes, with each node always having a packet available

for transmission, i.e., the transmission queue of each node is assumed to be always nonempty.

The key approximation of his model, which we adopt here too, is that each packet, at each

transmission attempt, collides with constant and independent probability p = 1− q regardless

of the number of retransmissions suffered2. This probability is called the conditional collision

probability, meaning that this is the probability of a collision experienced by a packet being

transmitted on the channel. Bianchi modeled the stochastic process representing the backoff

time counter for a given node as a bidimensional discrete-time Markov process. According to

his development, the probability τ that a node transmits in a randomly chosen slot time is [12]

τ =
2(1 − 2p)

(1 − 2p)(Wmin + 1) + pWmin(1 − (2p)m)
, (2.28)

which is a function of the conditional collision probability p, still unknown. To find the value

of p, it is sufficient to note that the probability p that a transmitted packet faces a collision in

the channel is the probability that at least one of the n−1 remaining nodes transmit in a given

time slot. By the independence assumption given above, each transmission experiences the
2Note that the probability q is the same as the one we used in Section 2.3.1.
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system in the same state, i.e., in steady state. Each remaining node transmits a packet with

probability τ in steady state. Therefore,

p = 1 − (1 − τ)n−1. (2.29)

Equations (2.28) and (2.29) form a nonlinear system in the two unknowns τ and p

that can be solved using numerical techniques. In fact, Bianchi showed [12] that this system

has a unique solution. To make things simpler, and to better understand the effect of different

parameters on these two probabilities, we will find an approximate solution to this nonlinear

system by linearizing both equations. For this purpose, let γ = 1− τ be the probability that a

node does not transmit in a randomly chosen slot time, i.e.,

γ =
(1 − 2p)(Wmin − 1) + pWmin(1 − (2p)m)

(1 − 2p)(Wmin + 1) + pWmin(1 − (2p)m)
. (2.30)

Given the continuity of both γ(p) and its derivatives3 in the interval p ∈ (0, 1), the

Taylor series expansion of γ(p) at p = 0 is given by

γ(p) =
Wmin − 1

Wmin + 1
+

2Wmin

(Wmin + 1)2
p+O(p2), (2.31)

where O(p2) accounts for the second and high order terms in the Taylor series expansion.

Hence, a first order approximation of γ(p) is simply

γ(p) =
Wmin − 1

Wmin + 1
+

2Wmin

(Wmin + 1)2
p, (2.32)

which, in terms of q = 1 − p becomes

γ(q) =
−2Wmin

(Wmin + 1)2
q +

W 2
min + 2Wmin − 1

(Wmin + 1)2

≈ −2Wmin

(Wmin + 1)2
q + 1. (2.33)

3Continuity with respect to the critical value p = 1/2 can be shown by simply rewriting γ(p) in the same way
as it was done for τ(p) in [12].
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Given that τ = 1 − γ, we have

τ(q) =
2Wmin

(Wmin + 1)2
q =

2Wmin

(Wmin + 1)2
(1 − p). (2.34)

Figure 2.2 shows the comparison between the nonlinear relationship of Eq. (2.28)

with the linear approximation of Eq. (2.34) for DSSS parameters (Wmin = 32 and m = 5).

The error in the approximation becomes more significant as the collision probability grows.

However, given the range at which τ is varying, the error tends to be very small. In Section

2.5 we evaluate the performance of our approximation.
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Figure 2.2: Transmission probability τ : comparison of nonlinear relationship versus linear approxi-
mation.

We can now substitute our approximation of τ(q) in the equation that relates the

probability that no node is transmitting at any randomly chosen slot time, i.e., q = (1−τ)n−1.

BecauseWmin can assume values such as 16 or 32 (depending on the physical layer of choice,

according to the IEEE 802.11 specifications), we have that 2Wmin/(Wmin + 1)2 << 1. Also,
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since 0 ≤ q ≤ 1, a first-order approximation of q = (1 − τ)n−1 is simply given by

q =

[
1 − 2Wmin

(Wmin + 1)2
q

]n−1

≈ 1 − 2(n− 1)Wmin

(Wmin + 1)2
q

≈ (Wmin + 1)2

(Wmin + 1)2 + 2(n− 1)Wmin
, (2.35)

which leads to the following approximation for the collision probability p :

p =
2Wmin(n− 1)

(Wmin + 1)2 + 2Wmin(n− 1)
. (2.36)

Equations (2.34) and (2.36) clearly show the decoupling we have achieved by lin-

earizing the original system of equations. Figure 2.3 shows the conditional collision probabil-

ity p as a function of the number of nodes n and the minimum contention window Wmin. As

we can see, for the current parameters of the IEEE 802.11 protocol, i.e., Wmin = 16 (FSSS)

and Wmin = 32 (DSSS), the collision probability is higher than 0.5 if the number of nodes in

the wireless LAN exceeds 20 nodes.
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Figure 2.3: Collision probability as a function of number of nodes in the network.

We can now turn to the problem of finding the conditional channel probabilities,
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represented here by the vector p. For this purpose, let Ptr be the probability that there is

at least one transmission in the considered time slot. Because we are considering the events

experienced by a node during its backoff period, only the remaining n − 1 nodes can be

contending for channel access. Therefore, because each of the remaining n−1 nodes transmits

a packet with probability τ at steady state, we have

Ptr = 1 − (1 − τ)n−1. (2.37)

The probability Psuc that a transmission occurring on the channel is successful is

given by the probability that exactly one node transmits on the channel, conditioned on the

fact that at least one node transmits, i.e.,

Psuc =

(
n−1

1

)
τ(1 − τ)n−2

Ptr
=

(n− 1)τ(1 − τ)n−2

1 − (1 − τ)n−1
. (2.38)

Therefore, the probability that a successful transmission occurs in a given time slot

is ps = P{Es} = PtrPsuc. Accordingly, pi = P{Ei} = 1 − Ptr and pc = P{Ec} =

Ptr(1 − Psuc). Figure 2.4 shows these three probabilities as a function of n, the number of

nodes. Finally, for the time intervals ts and tc, we follow the definitions given by Bianchi [12],

where4

ts = RTS + SIFS + τ + CTS + SIFS + τ + H + E{P} + SIFS + τ + ACK+

+ DIFS + τ, (2.39)

tc = RTS + DIFS + τ, (2.40)

where E{P} = P for fixed packet sizes.
4It is shown in [48] that, for correct floor acquisition to occur, CTS packets have to be at least the same size as

RTS packets plus the turnaround time plus twice the propagation delay, which does not happen in the IEEE 802.11
protocol. We will ignore this and consider that collisions involve RTS packets only.
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Figure 2.4: Conditional channel probabilities.

2.4 Model Validation

In this section we evaluate the accuracy of our model in predicting the first two

moments of a node’s service time in a single-hop IEEE 802.11 WLAN. For this purpose, we

use the simulator Ns-2 [87] to run simulations on network sizes varying from 8 to 56 nodes

(in steps of 8). All nodes transmit to some other node in the network according to the same

CBR source rate with fixed packet sizes of 1500 bytes (IP packet). We pick a source rate high

enough to saturate the nodes for each network size. Nodes are randomly placed in an area of

20 × 20 meters and have no mobility. Each run corresponds to 6 minutes of data traffic. We

trace each node in the network and compute both the mean and variance of its service time.

We repeat the experiment for 20 different seeds. We do that not just for statistical reasons, but

also because of the fairness problem inherent in the IEEE 802.11 DCF. As already reported in

the literature [10,130], the available bandwidth is not equally shared among competing nodes

under the IEEE 802.11 protocol. We noticed the same behavior during our simulations in some
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Table 2.1: IEEE 802.11 Physical Layer Parameters Used in Simulations.
DSSS FHSS

Wmin 32 16
Wmax 1024 1024
MAC Header 34 bytes 34 bytes
ACK 38 bytes 30 bytes
CTS 38 bytes 30 bytes
RTS 44 bytes 36 bytes
Slot Time 20 µsec 50 µsec
SIFS 10 µsec 28 µsec
DIFS 50 µsec 128 µsec
ACK Timeout 212 µsec —
CTS Timeout 348 µsec —

of the randomly-chosen topologies, where some nodes were more successful in acquiring the

channel than others. Regarding the physical layer, we use Direct-Sequence Spread Spectrum

(DSSS) with a raw bit rate of 2Mbps. Table 2.1 summarizes the parameters used for our

simulations. FHSS standard-specific paramaters are listed for completeness (ACK Timeout

and CTS Timeout are not specified in the standard). We compute the average service time and

jitter of each node in each run, and take the average over all nodes in the network. We repeat

this computation for all 20 seeds and report the results averaged over the 20 seeds. Figure 2.5

shows the numerical results for the average service time for both simulations and analytical

models (linear and nonlinear). As we can see, our analytical model performs quite well,

especially in small to medium-size networks, providing us with an upper bound on the average

service time. Regarding the increasing discrepancy observed as the number of nodes grows,

we note two main reasons. First, in our analytical model, a packet can backoff infinitely in

time, whereas in simulations (as in the standard) retry counters help the MAC determine when

it is no longer worth it to continue attempting to transmit a packet. Therefore, only packets
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Figure 2.5: Average service time as the number of nodes increases. Error bars show the standard
deviation (jitter) in both simulations and analytical models.

that were not discarded had their service time considered in the statistics. The second reason

stems from our assumption that periods of collision experienced by colliding nodes have the

same duration as the periods in which the channel is sensed busy by noncolliding nodes. As

mentioned before, this is not necessarily true, because the CTS timeout is usually longer than

the assumed tc, which lasts RTS + DIFS + τ µsec for noncolliding nodes. Fortunately, this

discrepancy is practically irrelevant if we note the high variance (jitter) of the service time

as the number of nodes grows, and the fact that the average service time predicted by both

linear and nonlinear models are within standard deviation of simulation results, as shown in

Figure 2.5. Another important result is shown in Figure 2.6, where we can see how accurate

our analytical model is in predicting the magnitude of the jitter experienced by each node in

the network. The similarity is quite striking, with the jitter predicted by the nonlinear model

slightly less than that in simulations. From Figures 2.5, and 2.6, we see that the linear model
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is a more conservative model, providing higher values for both delay and jitter. This is due to

the fact that, for the same values of n and Wmin, the probability of having transmissions and

collisions in the channel during a node’s backoff time is usually higher for the linear model

than for the nonlinear model. Consequently, the delay and jitter are also higher.
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Figure 2.6: Jitter magnitude as the number of nodes in the network increases.

2.5 Performance Evaluation

This section addresses the impact of some of the IEEE 802.11 parameters on the

average service time and jitter for both DSSS and FHSS physical layers, based on the model

we developed in Section 2.3 for saturated networks. Unless stated otherwise, the parameters

used are the ones in Table 2.1. First, we consider the impact of the initial contention window

size on the average service time and jitter. Figures 2.7(a) and 2.7(c) show the results for the

DSSS physical layer and Figures 2.7(b) and 2.7(d) show the results for the FHSS physical

layer. From the results, we see that, overall, DSSS performs better than FHSS in both average
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service time and jitter. This can certainly be explained by the significant sizes of the SIFS

and DIFS time intervals specified for the FHSS, as shown in Table 2.1. The length of the

DIFS and SIFS time intervals affect the average time a node stays in backoff, leading to

significant higher average service time and jitter. In particular, if we look at the performance

for their real parameters (Wmin = 32 for DSSS and Wmin = 16 for FHSS), we see that

FHSS average service time is, roughly speaking, twice the values of the DSSS physical layer,

specially for large networks. DSSS and FHSS exhibit the same behavior in terms of jitter. An

important observation to be made here is that, as far as delay and jitter in saturated networks

is concerned, increasing the initial contention window size improves the performance of the

system in both physical layers. Figures 2.7(e), 2.7(f), 2.7(g), and 2.7(d) show very clearly

the impact of the initial contention window size on service time and jitter. The results refer

to window sizes of 8, 16, 32, 64, 128, 512, and 1024. Both metrics drop dramatically as

we increase the initial contention window size to values such as 512 or 1024. For small to

medium-size networks (around 20 nodes) the jitter is very small and the average service time

is practically constant for window sizes higher than 128. For small values of window sizes,

DSSS still performs better than FHSS. Their performance becomes similar when window

sizes are bigger than 128. Such results can be easily explained by observing Figure 2.3, which

clearly shows that, as the minimum contention window size increases, the collision probability

decreases. Consequently, transmitted packets are more likely to be successful.

Figures 2.8(a), 2.8(b), 2.8(c), and 2.8(d) show the performance of DSSS and FHSS

physical layers for packet sizes of 32, 64, 128, 512, and 1024 bytes (IP packets). We see again

that DSSS outperforms FHSS in both average service time and jitter. From the graphs, we
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Figure 2.7: Average service time versus number of nodes for different initial contention window sizes:
(a) DSSS (b) FHSS. Jitter versus number of nodes for different initial contention window sizes: (c)
DSSS (d) FHSS. Average service time versus initial contention window size for different network
sizes: (e) DSSS (f) FHSS. Jitter versus initial contention window size for different network sizes: (g)
DSSS (h) FHSS. 44



see that performance is not very affected for medium-sized networks. However, the impact on

system performance is more critical for large networks, where a considerable increase in mean

service time and jitter is noticeable as packet size increases. This result can be explained if

we refer to Figure 2.4. In this figure, it is shown that, as the number of nodes increases,

the probability of having an idle channel decreases significantly, whereas the probabilites of

collision and successful transmission increase (with the successful transmission probability

still greater than the collision probability). Therefore, the time ts the channel is perceived busy

due to successful transmissions becomes more relevant in large networks. From Eq. (2.39), the

time ts depends on the average packet size. Consequently, the average packet size will have a

higher impact on the average service time and jitter in large networks. From these results, it

is interesting to note that, even though it is commonly stated that the RTS/CTS mechanism is

throughput-effective when the packet size increases [12], we are facing here a clear trade-off

on delay/throughput performance as the number of nodes increases.

Figures 2.8(e) and 2.8(g) show the average service time and jitter as we vary the slot

time size for the case of the DSSS physical layer. Figures 2.8(f) and 2.8(h) show the results

for the FHSS physical layer. Data packet size is fixed to 1024 bytes. From the graphs, we see

that, even though we have a big packet size, the slot time size has neglible impact on system

performance for both DSSS and FHSS physical layers. This result parallels the one reported

by Bianchi [12], where throughput does not change much as we vary the slot time size. The

fact is that, the amount of idle channel time still remains marginal with respect to the time

spent in transmissions and collisions regardless of how much we increase the slot size.

Figures 2.9(a), 2.9(b), 2.9(c), and 2.9(d) show the results quantifying the impact of
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Figure 2.8: Average service time versus packet size for different network sizes: (a) DSSS (b) FHSS.
Jitter versus packet size for different network sizes: (c) DSSS (d) FHSS. Average service time versus
slot size for different network sizes: (e) DSSS (f) FHSS. Jitter versus slot size for different network
sizes: (g) DSSS (h) FHSS. 46



the maximum backoff stage (parameter m) on the service time for DSSS and FHSS physical

layers. The results show that, as far as service time and jitter are concerned, the binary ex-

ponential backoff algorithm can be very harmful in large, saturated networks if the maximum

backoff stage is high. In both DSSS and FHSS we see that the fewer backoff stages, the better

is the performance, specially for large networks. This fact suggests that, in saturated networks

where nodes always have a packet ready to be sent in the head of their queues, the binary

exponential backoff algorithm seems to be inappropriate. In fact, nodes will constantly have

to backoff. However, according to our results, it is more effective to keep a constant, large

contention window size than to increase the size of the contention window exponentially. This

way, nodes will be more aggressive in acquiring the floor, providing lower delays.
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Figure 2.9: Average service time versus maximum backoff stage: (a) DSSS (b) FHSS. Jitter versus
maximum backoff stage: (c) DSSS (d) FHSS.
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2.6 Conclusions

In this chapter, we presented an analytical model for computation of the average

service time and jitter experienced by a packet when transmitted in a saturated ad hoc network

in which the IEEE 802.11 DCF is used. Using a bottom-up approach, we built the first two

moments of the service time based on the IEEE 802.11 binary exponential backoff algorithm

and the events underneath its operation. We provided a general model that can be applied

to many scenarios where the channel state probabilities that drive a node’s backoff operation

are known. Here, we applied our model to saturated single-hop networks with ideal channel

conditions and we carried out a performance evaluation of a node’s average service time and

jitter for the DSSS and FHSS physical layers. According to our results, as far as delay and

jitter are concerned, DSSS performs better than FHSS. In addition to this, we found that,

in contrast to previous studies on throughput in which the RTS/CTS mechanism was found

to be practically independent of the initial contention window size and network size, these

parameters have a major impact on system performance if delay is the metric in which we are

interested. In this case, the higher the initial contention window size, the smaller the average

service time and jitter are, especially for large networks. On the other hand, if we consider

packet size, the opposite applies: the smaller the packet, the smaller the average service time

and jitter are. Regarding the slot time size, we found that it has neglible impact on delay

performance for both DSSS and FHSS. Finally, for the maximum backoff stage, the binary

exponential backoff algorithm was found to be harmful if both the maximum backoff stage

and the number of nodes in the network are large. As far as delay in saturated IEEE 802.11

networks is concerned, the binary exponential backoff algorithm seems to be inapropriate,
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and a large and constant contention window size was showed to be more efficient, with packet

sizes being selected according to the network size.
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Chapter 3

Modeling IEEE 802.11 Single-Hop

Networks under Fading Channels

In this chapter, we introduce a simple, yet effective, analytical model that incorporates the

impact of the physical layer on the operation of the IEEE 802.11 DCF in saturated single-

hop ad hoc networks. To show an application of the analytical model, we study the impact

of frequency-nonselective slowly time-variant Rician fading channels on the performance of

saturated IEEE 802.11 single-hop ad hoc networks.

3.1 Introduction

In the previous chapter, we introduced an analytical model to characterize the ser-

vice time of a node in saturated IEEE 802.11 ad hoc networks. The advantage of our model

is the fact that it takes a bottom-up approach and builds the first two moments of the ser-
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vice time based on the events underlying the operation of the IEEE 802.11 binary exponential

backoff algorithm (rather than assuming or fitting a probability distribution to a node’s service

time). A key characteristic of the model is the fact that it is general enough to be applied

to any kind of IEEE 802.11 ad hoc network where the channel state probabilities govern-

ing the binary exponential backoff algorithm are known. Previously, we applied our results

to single-hop networks under ideal channel conditions. In this chapter, we find the channel

state probabilities when the physical layer is explicitly taken into account and Rician fading

channel is considered. We validate our model through simulations and study the throughput

performance of the standard-defined four-way handshake mechanism under direct sequence

spread spectrum (DSSS) physical layer with differential binary phase shift keying (DBPSK)

modulation.

The rest of the chapter is organized as follows. In Section 3.2 we present our ana-

lytical model. Section 3.3 contains our model validation and performance evaluation, and in

Section 3.4 we present our conclusions.

3.2 Analytical Model

The model we presented in the previous chapter is applicable whenever the channel

state probabilities p = [pi pc ps]
T driving a node’s backoff operation are known. We now

compute the values of p for a saturated, single-hop ad hoc network when aspects of the phys-

ical layer are taken into consideration. For this purpose, we extend the work by Bianchi [12],

who provided a model to evaluate the saturation throughput of the IEEE 802.11 MAC proto-

col under the hypothesis of ideal channel conditions. Following Bianchi’s analysis, we also
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assume a fixed number n of nodes, with each node always having a packet available for trans-

mission, i.e., the transmission queue of each node is assumed to be always nonempty. The

key approximation of his model, which we adopt here too, is that each packet collides with

constant and independent probability p = 1 − q at each transmission attempt regardless of

the number of retransmissions experienced. This probability is called the conditional colli-

sion probability, meaning that this is the probability of a collision experienced by a packet

being transmitted on the channel. As mentioned in the previous chapter, Bianchi modeled the

stochastic process representing the backoff time counter for a given node as a bidimensional

discrete-time Markov process. According to his development, the probability τ that a node

transmits in a randomly chosen slot time is given by Eq. (2.28), which is a function of the

conditional collision probability p.

In a real situation, one might expect that each node i would transmit a packet with

an individual transmission probability τi dependent on the individual conditional collision

probability pi (characterized by physical layer constraints such as path-loss propagation to

receiver, fading, interference, etc). But, because our focus is on single-hop networks, and we

want to consider the general scenario where nodes move constantly and randomly around an

area (and, therefore, their distances to the intended receivers are changing constantly), by the

independence assumption given above, we will assume that each transmission experiences the

system in the same state. Therefore, at steady state, all nodes transmit a packet with the same

probability τ , and packets will collide with the same probability p. In effect, we are assuming

that, on the average, all nodes experience the same channel conditions (e.g., fading, path-loss
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propagation, and interference)1.

Now, we can compute the conditional collision probability p by first considering the

probability q that the packet does not collide. Notice that, in the basic access scheme, this

packet refers to a data packet, whereas in the four-way handshake mechanism this is an RTS.

By the previous considerations, the average power of the packets at any receiver is about the

same. Therefore, we assume that, if two or more packets are transmitted at about the same

time they will collide in any given receiver in the single-hop network. This means that we

are not considering the capture phenomenon. Given that, the probability q that a transmitted

packet does not collide is given by

q = P{packet does not collide} = P{no neighbor transmits ∩ packet correctly received}

= P{packet correctly received | no neighbor transmits}P{no neighbor transmits}. (3.1)

The first probability is related to the successful reception of a packet by a given re-

ceiver. Therefore, it is a function of physical layer aspects such as the modulation/demodulation

scheme used, forward error control coding (FEC), receiver structure, thermal and background

noise, etc. In Section 3.2.1, we compute this probability according to specific physical layer

and channel conditions. For the moment, let us simply assume that

φ = P{packet correctly received | no neighbor transmits}. (3.2)

From the independence assumptions, the second probability in Eq. (3.1) will be given by

P{no neighbor transmits} = (1 − τ)n−1. (3.3)
1Chapters 5 and 6 consider the general case, where nodes are treated individually.
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Therefore,

q = φ(1 − τ)n−1, (3.4)

or, in terms of the conditional collision probability p,

p = 1 − φ(1 − τ)n−1. (3.5)

Eqs. (2.28) and (3.5) form a nonlinear system in the unknowns τ and p that can be

solved using numerical techniques. By using similar arguments as in [12], we can show that

this system has a unique solution (see details in Appendix 3.5).

For simplicity, and to better understand the effects of different parameters on the

probabilities τ and p, we find an approximate solution to the previous nonlinear system by

linearizing Eqs. (2.28) and (3.5). We have shown in the previous chapter that a first-order

approximation to Eq. (2.28) is given by

τ =
2Wmin

(Wmin + 1)2
(1 − p) =

2Wmin

(Wmin + 1)2
q. (3.6)

We can now substitute the above approximation for τ(q) in Eq. (3.4), which defines

the probability of a successful RTS reception. Because 2Wmin/(Wmin+1)2 << 1 (in 802.11,

Wmin >> 1) and 0 < q < 1, we have that

q = φ

[
1 − 2Wmin

(Wmin + 1)2
q

]n−1

≈ φ− 2φWmin(n− 1)

(Wmin + 1)2
q

≈ φ(Wmin + 1)2

(Wmin + 1)2 + 2φ(n− 1)Wmin
, (3.7)

or, in terms of p,

p =
(1 − φ)(Wmin + 1)2 + 2φ(n− 1)Wmin

(Wmin + 1)2 + 2φWmin(n− 1)
, (3.8)
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which leads to the results presented in Chapter 2 by making φ = 1. Eqs. (3.6) and (3.8)

clearly show the decoupling we have achieved by linearizing the original system of nonlinear

Eqs. (2.28) and (3.5).

We can now turn to the problem of finding the conditional channel state probabil-

ities in p by following similar procedures as in Chapter 2. For this purpose, let Ptr be the

probability that there is at least one transmission in the considered time slot. Because we are

considering the events experienced by a node during its backoff period, only the remaining

n− 1 nodes can be contending for channel access. Therefore, because each of the remaining

n− 1 nodes transmits a packet with probability τ at steady state, we have

Ptr = 1 − (1 − τ)n−1. (3.9)

The probability Psuc that a transmission occurring on the channel is successful is

given by the probability that exactly one node transmits on the channel and its handshake is

successful, conditioned on the fact that at least one node transmits, i.e.,

Psuc =

(
n−1

1

)
φτ(1 − τ)n−2

Ptr
=

(n− 1)φτ(1 − τ)n−2

1 − (1 − τ)n−1
. (3.10)

Therefore, the probability that a successful transmission occurs in a given time slot

is ps = P{Es} = PtrPsuc. Accordingly, pi = P{Ei} = 1 − Ptr and pc = P{Ec} =

Ptr(1 − Psuc).

3.2.1 Probability of Successful Packet Reception

Now let us consider the computation of the probability φ that a packet is correctly

received. For this purpose, we need to characterize the radio channel under consideration.
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We assume that all nodes are in line-of-sight (LOS) of each other, at an indoor environment

such as a conference room. As far as the large-scale path loss is concerned, we adopt the

simple model in which the path loss is a function of the transmitter/receiver distance d, with a

path loss exponent η. Such models have been used extensively in the literature and are given

by [99]

Pr = Ptκ

(
d0

d

)η

, (3.11)

where κ is a unitless constant which depends on factors such as antenna characteristics, and

d0 is the close-in reference distance. According to recent indoor measurements for the LOS

path loss in the 2.4 GHz ISM band (the one in which the IEEE 802.11 operates), the exponent

η was found to be 1.91 [25]. Accordingly, for simplicity, we use the well-know free-space

propagation model, in which η = 2 and κ = (GTGRλ
2)/(4πd0)

2L, where GT and GR are

the transmitter and receiver antenna gains, λ is the carrier wavelength in meters, and L is the

system loss factor not related to propagation (L ≥ 1). Let us denote

Gloss(d) = κ

(
d0

d

)2

(3.12)

the attenuation factor of the free space model.

As far as multipath fading is concerned, we adopt the Rician fading model because

of the LOS nature of the channel [99]. Wysocki and Zepernick [141] carried out indoor mea-

surements in the 2.4 GHz band and reported mean excess delays Tm in the range of 43.40 ns up

to 57.04 ns. If we approximate the coherence bandwidth2 (∆f)c by (∆f)c ≈ 1/Tm [56], and

take a mean delay spread of about 45.0 ns, then (∆f)c ≈ 22.22 MHz. According to the IEEE
2There is no exact definition for the coherence bandwidth [99]. Other definitions consider the coherence

bandwidth as the bandwidth over which the frequency correlation function is above 0.9 or 0.5.
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802.11 standard, the assigned channel bandwidth is about 22 MHz (after spreading), which

means that, under such conditions, the channel can be considered a frequency non-selective

channel (i.e., signal bandwidth < coherence bandwidth). It is important to mention that the

spread spectrum operation specified in the 802.11 helps to reduce intersymbol interference

(ISI), which is the main effect of a frequency-selective channel. Moreover, real implemen-

tations of matched-filter demodulators [67] generally correlate the whole PN sequence with

the incoming signal, i.e., the sampling time is equal to the original symbol duration, bringing

the samples from the chip rate back to the original data rate (instead of performing per-chip

demodulation). This way, possible effects of some frequency-selective fading on each trans-

mitted chip are, in effect, averaged over the symbol period and rejected during the de-spread

operation.

Now, if we consider a low mobility scenario (maximum velocity of 5 m/s), the

maximum doppler frequency is fD = vmax/λ = v·fc/c = (5×2.4×109)/(3×108) = 40 Hz.

In other words, the coherence time TC ≈ 1/fD = 0.025 s. Therefore, because the symbol

duration is much smaller than the coherence time, the channel can be considered as a slowly

time-variant fading channel. Finally, when data are transmitted over a frequency-nonselective

slowly time-variant Rician fading channel, the average bit-error probability for conventional

(two-symbol observation) differentially coherent detection of DBPSK is given by [108]

Pb =
1

2

(
1 +K

1 +K + γ

)
exp

(
− Kγ

1 +K + γ

)
, (3.13)

where K is given by

K =
Power of the line-of-sight component

Total power of all other scattered components =
a2

0

2σ2
z

,
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and γ is the average signal-to-noise ratio, defined by

γ =
Eb

N0
E{ψ2}, (3.14)

with Eb denoting the energy per bit, N0 the power spectrum density of the additive thermal

and background noise (assumed white Gaussian), E{ψ2} the mean squared value of ψ (the

Rician-distributed envelope of the multiplicative fading).

In Qualnet [105] (the simulator we use), it is assumed that E{ψ2} = Gloss(d).

At any time, the distance between any transmitter/receiver pair is largely dependent on the

mobility pattern of the nodes. In simulations, we use the Random Waypoint mobility model.

From the findings by Royer et al. [102], we can postulate that a reasonable candidate for the

pdf of the transmitter/receiver distance is a Maxwell distribution, i.e.,

fX(x) =

√
2

π
a3/2x2 exp

(−ax2

2

)
, x ≥ 0, (3.15)

where a is a constant and E{X} =
√

8/πa. Rigorously speaking, we should average Pb over

the transmitter/receiver distance d. Instead, to make things simpler, we average the path-loss

attenuation factor Gloss(d) over the distance d, and substitute the result back in Eq. (3.13). By

doing this, we are basically computing Pb for an average attenuation factor Gloss, given by

Gloss =

∫ dmax

d0

Gloss(x)fX(x)dx = aκd2
0 erf

(√
a

2
dmax

)
. (3.16)

Considering a square area of side l, and the fact under the random waypoint mobility model

nodes are likely to concentrate near the center of the area [11], we will assume that dmax ≈

l/2. If we assume that E{X} ≈ dmax/ 2, we have a = 128/πl2 and

Gloss =
128κd2

0

πl2
erf
(

4√
π

)
. (3.17)
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Finally, for the additive noise at the receiver front end, we have N0/2 = ξkBT0

W/Hz, where kB is the Boltzmann’s constant (1.38 × 10−23W s/K), T0 is the noise temper-

ature in Kelvin, and ξ is a constant, the noise factor, used to calculate the thermal noise level

of the physical model [105].

Once Pb has been found, we can compute the probability that a packet is correctly

received in Eq. (3.1). In a slow fading channel, errors are likely to be correlated, occurring

in bursts. In Qualnet, though, it is assumed that errors are independent from bit to bit (mem-

oryless channel). We will follow their assumption for purposes of performance evaluation.

Notice that, in the IEEE 802.11, the scrambling/descrambling operation works as an inter-

leaver, helping the bit errors to appear as random when contiguous bits are descrambled. As a

final remark, it has been shown that the undetected error probability for the 16-bit CCITT code

(the one used in the preambles of the 802.11) is very small [6]. For this reason, we assume that

all single and burst errors are correctly detected at the receiver. Given these considerations,

if the transmitted packet is x bits long, the probability φ that a packet is correctly received is

simply

φ = (1 − Pb)
x. (3.18)

3.3 Numerical Results

We use Qualnet v.3.5 [105] to run simulations on network sizes ranging from 10

to 60 nodes (in steps of 10). Nodes are randomly placed in an area of 50 × 50 m and move

around the terrain with velocities in the range [0, 5] m/s according to the random waypoint

algorithm. Each node transmits to one and only one receiver during the entire length of the
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simulation with the same CBR source rate. We pick source rates high enough to saturate all

nodes in the network. Packet sizes are fixed to 1500 bytes (IP packet) and each simulation run

corresponds to 5 minutes of data traffic. Regarding the physical layer, we use direct sequence

spread spectrum (DSSS) with a raw bit rate of 1Mbps with DBPSK modulation. Table 3.1

summarizes the rest of the parameters used in the simulations.

Figure 3.1(a) depicts simulation results for throughput versus the number of nodes

for different values of the Rice parameter K. As we can see, throughput varies according to

the number of nodes and the parameter K. As the number of nodes increases, throughput ob-

viously decays as a result of higher contention within the network. Regarding the parameter

K, as it increases, throughput increases as well. This is due to the fact that we have Rayleigh

fading when K = −∞ dB, which corresponds to the worst case scenario, where there is no

line-of-sight component. As K increases, fading goes away, and the channel gets closer to

an AWGN channel. From the results, we notice that smaller networks are more sensitive to

changes in K than larger networks. As the number of nodes increases (and, consequently,

contention) packet collisions dominate the packet reception rate, and fading becomes less of

an issue. It is interesting to note that both behaviors (i.e., throughput versus K and number of

nodes) are captured by the analytical models, as shown in Figure 3.1(b). However, the analyt-

ical models provide a more conservative picture when compared to simulations, especially the

linear model, given that it is already an approximation to the nonlinear model. As the number

of nodes increases, the average throughput is smaller than in simulations, and sensitivity to K

is more prominent for smaller numbers of nodes, while it is practically irrelevant for bigger

network sizes. There are three main reasons for the behavior just observed in the analytical
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Figure 3.1: (a) Simulation results. (b) Analytical models.
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Table 3.1: Simulation Parameters for both PHY and MAC Layers.
Wmin 32 Temperature (Kelvin) 290
Wmax 1024 Noise Factor 700
MAC Header (bytes) 34 Transmission Power (dBm) 1
ACK (bytes) 38 Sensitiviy of PHY (dBm) -79.0
CTS (bytes) 38 Minimum Power for received packet (dBm) -77.0
RTS (bytes) 44 GT 1
Slot Time (µsec) 20 GR 1
SIFS (µsec) 10 L 1
DIFS (µsec) 50 d0 (meters) 1
ACK Timeout (µsec) 212 vmax (m/s) 5
CTS Timeout (µsec) 348

models. First, in the model developed in Chapter 2, packets are allowed to backoff infinitely,

as opposed to simulations, which follow the IEEE standard and have retransmission counters

to limit the number of times a frame is retransmitted. In our simulations, a fraction of the

packets is actually dropped because of this reason, especially in large network scenarios. Sec-

ondly, our model assumes that periods of collisions experienced by colliding nodes have the

same duration as periods in which the channel is sensed busy by non-colliding nodes. This

assumption has a direct impact on the number of nodes contending for the channel at any

given time. When two or more nodes transmit at about the same time, if their packets collide,

they will wait CTS timeout seconds until they figure out that a collision has occurred. On

the other hand, nodes that did not transmit at that particular time will sense a “clear channel”

much earlier before colliding nodes do and, therefore, are more likely to be ready to transmit

before the colliding nodes. For this reason, our model implies a more “aggressive” network,

where the probability of having a node transmitting at any given time is higher than in real

scenarios. Last, but not least, we have the impact of the capture phenomenon. As mentioned

in Section 3.2, our model does not take into account the capture effects, which are present
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in Qualnet simulations and are known to affect throughput considerably. Regardless of these

limitations, both linear and non-linear models perform close to simulation results. It is impor-

tant to point out here that, in simulations, nodes are constantly moving in different patterns

with transmitter/receiver distances varying according to some unknown probability distribu-

tion. Despite this fact, our model is able to capture the general behavior by simply computing

the average attenuation factor, as given by Eq. (3.17). In simulations, signal-to-noise ratios

can vary by more than 33 dB at distinct receivers due to path-loss propagation effects. Con-

sidering such a dynamic range, the results provided by the analytical models have a striking

correlation with simulation results. It is actually the computation of a good “representative” of

the average signal-to-noise ratio the key to diminish the differences between simulations and

analytical models with respect to variations in K, which certainly depends on how accurate is

our estimation of the probability distribution of the transmitter-receiver distance.

In order to better show this problem, Figure 3.2 shows the theoretical throughput

as a function of the average signal-to-noise ratio γ as predicted by the analytical models.

In this figure, we show analytical results for network sizes of 10 and 50 nodes, as well as

the case when the channel has no fading (AWGN channel, DBPSK modulation). For these

cases, fading becomes relevant when the average signal-to-noise ratio is around 20 dB or

less. Also, as we can see, there is a difference in signal-to-noise ratio of about 2 dB with

respect to the point where fading kicks off in both network sizes. For a fixed SNR, throughput

variation is more dramatic in small network sizes, as mentioned before. As the SNR decreases,

fading becomes also relevant in bigger network sizes. Although not shown in the graphs, the

performance for AWGN channels also decreases for smaller SNR values.
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Figure 3.2: Throughput versus signal-to-noise ratio: performance comparison for channels with and
without Rician fading.

3.4 Conclusions

In this Chapter, we introduced a simple, yet effective, analytical model for satu-

rated IEEE 802.11 single-hop ad hoc networks that considers the impact of the physical layer

on protocol operation and network performance. Using a bottom-up approach, aspects of

the physical layer were explicitly incorporated in the dynamics of the events governing the

operation of the IEEE 802.11 binary exponential backoff algorithm, leading to a more real-

istic computation of a node’s average service time and throughput. We studied the impact

of frequency-nonselective slowly time-variant Rician fading channels on the performance of

saturated IEEE 802.11 single-hop ad hoc networks. We validate our model through simula-

tions and studied the throughput performance of the four-way handshake mechanism under

direct sequence spread spectrum (DSSS) with differential binary phase shift keying (DBPSK)
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modulation. According to our results, smaller networks are more sensitive to fading variations

than larger networks. As the number of nodes increases, packet collisions dominate the packet

reception rate, and fading becomes less of an issue.

3.5 Appendix

If we invert Eq. (3.5), we obtain τ ∗(p) = 1 − [(1 − p)/φ]1/(n−1). If φ 6= 0, this

is a continuous and monotone increasing function in the range p ∈ (0, 1), which starts at

τ∗(0) = 1 − φ−1/(n−1) (it can be negative) and grows up to τ ∗(1) = 1 . On the other hand,

Eq. (2.28) is also continuous in the range p ∈ (0, 1) and is a monotone decreasing function

that starts at τ(0) = 2/(Wmin + 1) and reduces to τ(1) = 2/(1 + 2mWmin). Uniqueness of

the solution can be proven if we can show that τ(0) > τ ∗(0) and τ(1) < τ ∗(1), i.e., the two

curves intercept at some point p ∈ (0, 1). From the above, we clearly have that τ(1) < τ ∗(1).

Now, observe that τ ∗(0) > τ(0) if and only if 1 − (1/φ)1/(n−1) > 2/(Wmin + 1), i.e.,

φ > [(Wmin + 1)/(Wmin − 1)]n−1. Because the initial contention window size Wmin > 1

(802.11 standard), the right-hand side is always greater than 1, which implies that we need to

have φ > 1 in order for τ ∗(0) > τ(0). However, because φ is a probability, i.e., 0 ≤ φ ≤ 1,

there exists no value of φ such that τ ∗(0) > τ(0). On the other hand, τ(0) > τ ∗(0) if and

only if 2/(Wmin + 1) > 1 − (1/φ)1/(n−1), i.e., φ < [(Wmin + 1)/(Wmin − 1)]n−1, which is

certainly true; therefore, τ(0) > τ ∗(0).
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Chapter 4

Modeling Energy Consumption in

Single-Hop IEEE 802.11 Networks

This Chapter presents an analytical model to predict energy consumption in saturated IEEE

802.11 single-hop ad hoc networks under ideal channel conditions. The model we introduce

takes into account the different operational modes of the IEEE 802.11 DCF MAC, and is

validated against packet-level simulations. In contrast to previous works that attempted to

characterize the energy consumption of IEEE 802.11 cards in isolated, contention-free chan-

nels (i.e., single sender/receiver pair), we investigate the extreme opposite case, i.e., when

nodes need to contend for channel access under saturation conditions. In such scenarios, our

main findings include: (1) contrary to what most previous results indicate, the radio’s transmit

mode has marginal impact on overall energy consumption, while other modes (receive, idle,

etc.) are responsible for most of the energy consumed; (2) the energy cost to transmit useful

data increases almost linearly with the network size; and (3) transmitting large payloads is
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more energy efficient under saturation conditions; and (4) data transmissions at higher rates

have marginal impact on overall energy consumption in saturated networks under ideal chan-

nel conditions.

4.1 Introduction

Since most ad hoc networks include nodes that are connected to limited power

sources (e.g., batteries), energy is a precious resourse. As a result, in the past few years,

the design of “energy-efficient” or “energy-aware” protocols for ad hoc networks has become

an area of intense research. Understanding the energy consumption at all network layers—

as well as the energy consumed due to inter-layer interactions—is a fundamental step in the

design of power-efficient protocols for wireless ad hoc networks.

As it has already been reported in the literature [110], [41], energy consumption

of a wireless network interface card (NIC) can be significant, especially when small, power-

anemic devices are considered. Typically, NICs implement two layers of the protocol stack,

namely the medium access control (MAC) and the physical (PHY) layers. Nowadays, most

commercial wireless NICs are based on the IEEE 802.11 standard [64]. The IEEE 802.11

MAC (its distributed coordination function (DCF), in particular) is also widely available in

many discrete-event network simulators, and is the MAC of choice in the evaluation of many

higher-layer protocols for ad hoc networks. In addition, the IEEE 802.11 DCF contains vari-

ous mechanisms and features upon which many of the recently-proposed MAC protocols rely,

such as carrier sensing, collision avoidance, exponential backoff, and others. For these rea-

sons, the study of energy consumption in the IEEE 802.11 DCF represents an important step
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towards the design of future energy-efficient protocols.

This chapter presents advances in two fundamental aspects of energy-aware pro-

tocols: it introduces an analytical model to predict energy consumption in single-hop IEEE

802.11 ad hoc networks (under ideal channel conditions), and it validates this model with

discrete-event simulations using Qualnet v3.6 [105], for which an extended and improved

energy consumption accounting was implemented [80]. In particular, we are interested in

addressing the following questions: (1) How accurate is the analytical model compared to

discrete-event simulations? (2) What is the relative energy consumption among the MAC

operational modes (e.g., transmit, receive, and idle) when nodes are actively contending for

channel access (under saturation)? (3) What is the efficiency (Joule/Bit) incurred at each node

for a specific network size? (4) How does efficiency changes as the network size increases?

(5) What is the impact of payload size on energy consumption as the number of nodes in-

creases? (6) What are the energy savings if we transmit data at higher rates under saturation

and ideal channel conditions?

Section 4.2 presents a brief overview of relevant work in energy consumption in the

recent past. Section 4.3 presents the analytical model based on service-time characterization.

Following that, Section 4.4 validates the model by comparing its results against data obtained

using packet-level simulations. Finally, Section 4.5 presents our conclusions.

4.2 Related Work

A number of papers have characterized energy consumption in the IEEE 802.11

DCF. Stemm and Katz [110] have measured the power consumption of some NICs when used
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by different end-user devices. They also report on transport- and application-level strategies to

reduce the burden of energy consumption at NICs. Feeney and Nilsson [41] have reported de-

tailed energy consumption measurements of some commercially-available IEEE 802.11 NICs

operating in ad hoc mode. Along the same lines, Ebert et. al. [34], [35] have measured the im-

pact of transmission rate, transmit power, and packet size on energy consumption in a typical

wireless network interface. In all previous works, however, the focus was on characterizing

energy consumption during the many modes of operation of a NIC, under extremely simple

scenarios: only two nodes operating in ad hoc mode, with one node acting as the sender

and the other as the receiver. None of the efforts investigated the energy consumption that is

drained from the MAC operation itself, i.e., when nodes need to contend for channel access.

Such studies, as pointed out by Feeney [41], are difficult to reproduce experimentally, and

discrete-event simulations or probabilistic analysis are more appropriate.

The modeling of energy consumption at the MAC layer has already been treated

previously in the context of cellular networks. Chockalingam and Zorzi [29] have developed

an analytical framework to study the energy efficiency of MAC schemes whose operations can

be described by finite state-space Markov chains. In particular, they have compared different

versions of a hybrid protocol using slotted ALOHA and reservation concepts, and evaluated

their performance with respect to the fading characteristics of the wireless channel. Within

the same context, Chen et. al. [24] have conducted an energy consumption analysis of some

MAC protocols, including the IEEE 802.11 itself. They showed that MAC protocols that aim

to reduce the number of contentions perform better from an energy consumption perspective.

As far as the modeling of the IEEE 802.11 is concerned, however, their approach falls short in
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providing an accurate description of 802.11 DCF’s behavior, because it ignores the binary ex-

ponential backoff operation, which is at the heart of the protocol. Instead, retransmissions and

newly-generated packets are treated collectively as a single Poisson process. Moreover, be-

cause the analysis targets the infrastructure (WLAN) mode, the energy that is consumed when

nodes act as receivers is not taken into account and, therefore, the model is not appropriate for

an analysis of energy consumption in ad hoc networks, even fully-connected ones.

Qiao et. al. [94] have explored power-conserving strategies for IEEE 802.11a/h sys-

tems that adaptively select appropriate power-rate settings for each data transmission attempt.

Their approach is based on an off-line computation of a lookup table that contains power-rate

combinations indexed by the data transmission status (frame retry counts, payload, etc.). To

compute the lookup table, an energy consumption analysis of the MAC operation was de-

veloped, and a recursive calculation of the average total energy consumption was provided.

However, because the goal of their analysis was the generation of the lookup table—not the

analysis of the IEEE 802.11 itself—the account of energy consumption was built from the

standpoint of a sending node and, again, the model is not suitable for the analysis of an ad hoc

network as a whole, where nodes can play both the sender and receiver roles. Additionally, a

more careful analysis of the events that happen during the times the backoff counter is frozen

is lacking, and an upper bound was obtained instead for the energy spent during those periods.

Recently, Gobriel et al. [55] have investigated the effect of transmission power con-

trol on overall throughput and energy savings in power-aware ad hoc networks. The drawback

of their analysis, which targeted the IEEE 802.11 DCF, is the fact that the binary exponential

backoff algorithm is ignored and a constant contention window size is assumed instead. For
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this reason, as far as energy consumption is concerned, this model is not a good candidate

to accurately reflect the energy consumption in IEEE 802.11 ad hoc networks. In addition,

because the model was not validated/compared with discrete-event simulations, the accuracy

of the model itself demands more study.

Concurrently with our previous work [22], Zanella and Pellegrini [147] have pro-

vided an analytical model for the energy consumption of single-hop IEEE 802.11 networks

under ideal channel conditions. In their work, they assume that packets can be retransmitted

indefinetly. Their work focuses on the analytical computation of a node’s lifetime. As in the

work by Gobriel et al. [55], no validation of the analytical model is carried out (e.g., against

packet-level simulations).

4.3 Energy-Aware Model

Typically, the various tasks performed by a MAC protocol correspond to different

radio modes, which exhibit different power requirements. In the particular case of the IEEE

802.11 DCF, two power management mechanisms are supported: active and power-saving

(PS) [64]. In this paper, we only consider the active mechanism, in which a node may be in

one of three different radio modes, namely, transmit, receive, and idle modes. In an ad hoc

network under saturation conditions, each node actively contends for channel access while

at the same time is a potential receiver of some other node’s transmission. Therefore, while

attempting to transmit its own data frame, each node needs to respond to transmission requests

from other nodes. Consequently, understanding the service time in a network under saturation

conditions is fundamental, because nodes have to constantly switch to different power modes
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according to the perceived state of the channel and their own operation.

In Chapter 2, we introduced an analytical model to characterize the first two mo-

ments of the service time of a node in a saturated IEEE 802.11 ad hoc network. One of the

drawbacks of the model is the fact that frames are allowed to backoff infinitely in time. This

is not consistent with what is defined in the standard, where retransmission counters limit the

number of attempts to transmit a particular data frame, after which the frame is dropped. The

infinite backoff abstraction makes the model much more tractable, but makes it too conserva-

tive, predicting higher service times (and consequently, lower throughputs) than what actually

happens in the IEEE 802.11 DCF. In this Chapter, we extend the model to include a more real-

istic approach regarding the IEEE 802.11 binary exponential backoff algorithm by developing

the average service time for the case of a finite backoff operation. For this purpose, we keep

our previous assumption that the conditional probability of a successful handshake per trans-

mission attempt, q, is constant. In other words, at the end of a backoff stage, the probability

of a successful handshake is constant, regardless of the number of previous attempts.

Now, let M be the maximum number of times a frame can be retransmitted, i.e.,

the maximum number of backoff stages a frame can undergo (defined in the standard). In this

case, we have a truncated geometric distribution, given by

P{B = k} =
(1 − q)k−1q

1 − (1 − q)M
, k = 1, 2, . . . ,M. (4.1)

Hence, following the same developments adopted in Chapter 2, the average service

time is now given by (omitting intermediate steps, which are straigthforward but tedious):

TB =
αWmin

2
β1 −

α

2
β2 + β3 tc, (4.2)
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where

β1 =
A1 +A2 +A3

1 − (1 − q)M
, (4.3)

A1 =
2q{1 − [2(1 − q)]m}

2q − 1
− 1 + (1 − q)m, (4.4)

A2 =
(
2m+1 − 1

)
(1 − q)m

[
1 − (1 − q)M−m

]
, (4.5)

A3 =
2m
{
(1 − q)m+1 − (1 − q)M [1 + q(M −m− 1)]

}

q
, (4.6)

β2 =
1 − (1 − q)M (1 + qM)

q[1 − (1 − q)M ]
, (4.7)

β3 =
(1 − q) − (1 − q)M [1 + q(M − 1)]

q[1 − (1 − q)M ]
, (4.8)

where the parameters α, m, Wmin, and tc are defined as before. Because we are dealing

with a saturated network under ideal channel conditions, the computation of the channel state

probabilities pi, ps, and pc follow the derivations in Section 2.3.2.

4.3.1 Energy Consumption Model

To account for the energy consumption under saturation conditions, we need to con-

sider the many events that take place while a node is trying to transmit its own data frame.

For this purpose, let us first look at Eq. (4.2), which describes the average time a node spends

in backoff. As described in Section 2.3.1, decrementing a node’s backoff time counter de-

pends on the node’s perception of the channel state. As we have pointed out, there are three

main channel states (or “events” during backoff): successful transmission, collision, and idle

channel states. Notice that, these “states” do not correspond to the “modes of operation” of a

network interface.

In the successful transmission channel state, the node in backoff experiences a suc-
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cessful transmission happening over the channel. This transmission, however, can either refer

to a successful transmission between any two nodes in the network, or to a successful trans-

mission having the node itself as the target receiver. In the former case, the node in backoff

overhears an RTS and updates its network allocation vector (NAV) accordingly [64], freezing

its backoff time counter for the duration of someone’s else four-way handshake (or two-way

handshake if the basic access mode is used). Notice that, in this case, the node in backoff first

overhears the RTS and then stays idle for the duration of the advertised transfer, as recorded

in the NAV. In the latter case, i.e., when the node itself is the recipient of the transfer, it has to

receive the RTS and DATA frames from the sender, and transmit the corresponding CTS and

ACK frames back to the sender. Meanwhile, power is also consumed during the time intervals

corresponding to SIFS’s, DIFS’s, and propagation delays δ, during which the node stays idle

or senses the channel1.

In the collision channel state, similar events can take place from the standpoint of

the node in backoff, i.e., the node is either overhearing or being the target of a transmission.

Here, however, the node in backoff is overhearing an unsuccessful transmission or is being the

target of a failed handshake. As before, energy is consumed while in overhearing and receiving

modes, respectively. Nodes also consume power during the DIFS interval as the node waits

before resuming its own backoff operation, after overhearing/receiving a failed handshake.

Finally, during the idle channel state, the node in backoff basically senses the channel and

decrements its backoff time counter each time no activity is detected for the duration of a time

slot [64], [17].
1In reality, some power is also consumed when the network interface switches from one mode to another as,

for instance, from the receive mode to the transmit mode (or idle mode). In this paper, we disregard the power
costs of switching from one mode to another.
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All these three states correspond to times when the node is in backoff, perceiving the

channel activity, and before attempting its own handshake, i.e., during the course of a backoff

stage, as mentioned in Section 2.3.1. The node attempts to establish a handshake with its

intended receiver only at the end of a backoff stage. Each time the handshake fails, the node

backs off again and repeats the process, until it finally succeeds in establishing the handshake

and before it reaches the maximum number of allowed retransmissions, in which case, it drops

its current data frame. In each of its handshake attempts, the node waits for a cts timeout

period before deciding that its RTS was not successful. In our analytical model (Eq. (4.2)),

this collision resolution period is indicated by tc, which, as described in Eq. (2.40), includes

the time to transmit the RTS frame. Therefore, from Eq. (2.40), DIFS + δ seconds are spent

in sensing the channel, waiting for the CTS frame that is never received.

During a successful four-way handshake with the node’s intended receiver, the NIC

switches through a number of modes of operation. During the four-way handshake time inter-

val T s (i.e., ts−DIFS), the node transmits an RTS and a DATA frame (expressed in Eq. (2.39)

by the headerH and payload P ), receives the CTS and ACK back from the receiver, and stays

idle during the time intervals corresponding to SIFSs and propagation delays δ. According

to experimental results reported by Feeney et. al. [41], the costs of overhearing a frame,

staying idle, or sensing the channel are only marginally different from the cost of actually

receiving a frame (in the IEEE 802.11 network interfaces evaluated). Note that these costs

are not provided by manufacturers in data sheets. They were all measured in experiments.

For this reason, many network simulators assume (implicitly or explicitly) the same power

level for the idle, overhear, sense, and receive modes [105]. Consequently, because we want
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to compare our analytical model with simulation results, we follow this same assumption and

consider two power levels only: passive, or Ppas, for the cases when the NIC is in any of the

four aforementioned modes, and active, or Pact, for the mode in which the NIC is actually

transmitting something. Given these considerations, all we need to do is to account for the

time intervals in which the network interface stays either in the “passive” or “active” modes.

From our previous remarks, a node will be in “passive” mode during backoff except

for the case when it is the target receiver of a handshake request, in which case it has to

transmit CTS and ACK frames back to the sender. If we denote by T back
pas the time a node is in

passive mode during its backoff, we have, from Eq. (4.2),

T back
pas =

α(Wminβ1 − β2)

2
. (4.9)

At the end of a backoff stage, the node attempts to perform a handshake with its

intended receiver. Before succeeding in doing that, however, the node will spend β3tc seconds,

on average, in collision resolutions due to unsuccessful attempts (as shown in Eq. (4.2)). In

each collision resolution time interval tc, the node spends DIFS+δ seconds in “passive” mode.

Hence, if T col res
pas denotes the average time spent in passive mode during collision resolutions

and, likewise, T col res
act the average time spent on “active” mode during collision resolution, we

have that

T col res
pas = β3(DIFS + δ) and T col res

act = β3RTS. (4.10)

When the node succeeds in performing a handshake, it will spend T 4 way
pas seconds in

passive mode during the four-way handshake. From Eq. (2.39), this time interval corresponds

to

T 4 way
pas = CTS + ACK + 3 × SIFS + 4δ, (4.11)
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whereas in transmission the node will spend

T 4 way
act = RTS + H + E{P}. (4.12)

Finally, we need to take into account the case when the node is the target receiver

of a handshake request during its backoff, in which case it needs to transmit CTS and ACK

frames back to the sender. In a single-hop ad hoc network under ideal channel conditions,

no capture or hidden terminal problems happen. Therefore, it is always assumed that all

frame collisions are due to RTS collisions at the intended receiver. This means that, under

such assumptions, no CTS or ACK frame is ever transmitted unsuccessfully. Therefore, the

recipient of a handshake request only transmits a single CTS and a single ACK frame for

each data transmission request, i.e., only those frames corresponding to the completion of a

successful handshake. Furthermore, assuming a balanced and fair distribution of load in the

network 2, if Ttotal denotes the total observation time, then, on average, Ttotal/T data frames

will be received by any node during the time interval Ttotal. From the remarks, for each data

frame transmitted successfully, there is one and only one CTS and ACK frame sent by the

intended receiver. Therefore, the average time T back
act a node spends transmitting CTS and

ACK frames back to other nodes (while the node itself is in backoff) is given by

T back
act = N(CTS + ACK), (4.13)

where N = Ttotal/T is the average number of data frames transmitted over the interval Ttotal.

Hence, if Epassive and Eactive denote the energy consumptions in the passive and active modes,
2This assumption is realistic in ad hoc network scenarios such as n-way conferencing, and sensor network

monitoring. Motivated by applications that may produce non-uniform traffic distributions, one of our directions of
future work is to extend our model accordingly.
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respectively, during the observation time Ttotal, then, from above,

Epassive = NPpas

(
T back

pas + T col res
pas + T 4 way

pas

)
(4.14)

and

Eactive = NPact

(
T back

act N
−1

+ T col res
act + T 4 way

act

)
, (4.15)

where theN−1 term accounts for theN already included in the computation of T back
act . Finally,

the total energy consumption Etotal is simply

Etotal = Epassive + Eactive. (4.16)

4.4 Model Validation and Performance Analysis

We validate our energy-aware model through packet-level simulations using the

Qualnet v3.6 simulator [105] with improved energy consumption instrumentation [80]. We

then use the model to account for energy consumption of saturated IEEE 802.11 single-hop

ad hoc networks in a variety of ad hoc scenarios with different network- and payload sizes.

Results correspond to the average of 10 runs with different seeds and different transmission

start times (necessary to reduce IEEE802.11 unfairness). Table 4.1 summarizes the simulation

parameters used. It is important to note that simulation parameters were chosen in order to

provide a simulation environment as close as possible to the assumptions made in our model.

Figures 4.1 and 4.2 show the average energy consumption per node (in Joules) for

the active and passive modes, as well as their sum (i.e., the total energy consumption) for

different network sizes. Figure 4.1 plots results for the 1472-byte payload, whereas Figure 4.2

shows the results for a payload of 20-bytes. As we can observe, the analytical model predicts
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Table 4.1: Simulation parameters used for validation of the IEEE 802.11 energy consumption model.

Parameter Value Parameter Value

Area 50 × 50 m Phy model phy-IEEE802.11
Number of nodes 10, 20, 30, 40, 50 RX model SNR-based
Node placement random RX-SNR-THRESHOLD 10.0
Node mobility none Routing protocol static
Simulation time 300 sec Traffic CBR
Bandwidth 1 Mbps Payload size 20 and 1472 bytes
TX-POWER 10 dBm Packet interval 0.024 sec
RX-POWER -82.045 dBm Power consumption in TX 1650 mW
Path loss model free-space Power consumption in RX 1400 mW
Fading model none

quite well the simulation results. Because the analytical model is more conservative in terms

of throughput [17], it leads to slightly smaller energy consumption values for the active mode

and, consequently, slightly bigger values for the passive mode, compared to simulations. It is

worth mentioning that, when compared to the model, Qualnet simulations use more “realistic”

PHY-layer parameters, as shown in Table 4.1. Despite this fact, the analytical model proved

to be a good abstraction of the simulated scenarios, supporting our earlier assumptions of

restricting collisions to RTS frames only (for fully-connected networks).

Regarding individual contributions of the operational modes to overall energy con-

sumption, the passive mode is responsible for the largest fraction of the total energy consumed.

For the network sizes investigated, the passive mode consumes more than 88% of the total en-

ergy drained (for the chosen parameters). This result is a direct consequence of the fact that,

under saturation and high contention, nodes spend most of their time backing off and listening

to the channel, instead of actually transmitting data. For all network sizes investigated, the

average total energy consumption is about 420 J, leading to an average power consumption of
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Figure 4.1: Per-node average energy consumption versus network size for a 1472-byte payload.
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Figure 4.2: Per-node average energy consumption versus network size for a 20-byte payload.
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1.4 W for the 300 s period, i.e., equivalent to the nominal power setting for the passive modes

(energy consumption in RX) as shown in Table 4.1. This is consistent with the observation

that passive modes are responsible for most of the energy dissipated. As the number of nodes

increases, the power consumption in passive mode increases from 1.25 W up to 1.37 W. In

other words, although the nominal value for the transmit (active) mode is 250 mW higher

than the value for the receive (passive) mode, its impact is practically insignificant as far

as the MAC operation in saturation conditions is concerned. This result opposes the findings

in [41] and [34] which, under the perspective of a two-node scenario (sender/receiver) without

contention, transmit mode is the largest overall energy consumer.

In cases where power-saving methods cannot be employed for some reason (like the

IEEE 802.11 power saving (PS) mode [64], not available at some NICs), this result suggests

that one can design energy-efficient WLAN devices by focusing on the optimization of circuits

that are mainly active during passive modes of operation (see [94] for a simplified block

diagram of a WLAN device). In fact, in typical WLAN devices, the RF power amplifier is a

key component that, alone, demands most of the nominal power consumption, and it is used

only in the transmit mode [34], [94]. According to our results, this is exactly the component

that will affect performance the least, as far as energy consumption under channel contention

is concerned.

Another interesting observation from Figures 4.1 and 4.2 is that the energy spent

on both 20- and 1472-byte transfers are equivalent in all modes of operation. In other words,

from the standpoint of energy-efficiency, it is better to transmit bigger payloads than smaller

payloads, because the net energy consumption is the same. This last result can be better
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illustrated by the energy efficiency to transmit useful data, Eeff given by

Eeff =
Total Power Consumption

Goodput
J/s

Bit/s. (4.17)

Figure 4.3 shows the behavior of Eeff for the cases of 20- and 1472-byte data pay-

loads as the number of nodes increases. Surprisingly, the energy cost appears to have an

almost linear increase with network size. Moreover, the energy cost to transmit a 20-byte data

payload grows at a rate that is about one order of magnitude higher than the cost to transmit

a 1472-byte payload. For the 1472-byte scenario, the energy cost grows at a rate of approx-

imately 0.002 mJ/Bit, whereas in the 20-byte scenario, the energy cost grows at 0.02 mJ/Bit.
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Figure 4.3: Energy efficiency (millijoules per bit) versus network size for 20-byte and 1472-byte
payloads.

The usefulness of an analytical model such as the one we provide here is the ability

to provide quick answers without resorting to simulations. As an example, we use it to analyze
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the energy consumption of commercially-available NICs, namely the Lucent WaveLan card

transmitting at both 1 Mbps (TX = 1650 mW and RX = 1400 mW) and 11 Mbps (TX = 1400

mW and RX = 900 mW), and the Cisco Aironet PC4800 at 1 Mbps (TX = 2200 mW and

RX = 1350 mW) [34]. Figure 4.4 shows that, as expected, the power setting that provides the

smallest energy consumption is exactly the one with the smallest power level in passive mode,

i.e, the 11-Mbps WaveLan. Another interesting result is the little impact that transmit power

has on overall results. All three settings showed similar performance in active mode, despite

their relative nominal power differences.
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Figure 4.4: Energy consumption from the analytical model for different power settings.

This last set of results prompts the following question: what is the actual impact of

the data rate on energy efficiency if power levels are kept constant (in reality, power levels

change for different modulation schemes)? To answer this question, we investigate what is

the energy consumption for the four data rates supported by the IEEE 802.11 b, namely: 1

83



Mbps (BPSK), 2 Mbps (QPSK), 5.5 Mbps (CCK), and 11 Mbps (CCK). Figure 4.5 shows

the energy consumption results when TX = 1400 mW, RX = 900 mW, and the payload size

is 1472 bytes. We choose this payload size to emphasize the impact of the data rate, since

the headers are always transmitted at 1 Mbps using DBPSK. As we can see, the higher the

data rate is, the higher the energy savings become. Unfortunately, such energy savings are

not very significant, implying that, as far as single-hop saturated networks under ideal channel

conditions are concerned, different data rates have little impact on overall energy consumption.

Notice that, our focus here is on how much energy can be saved by simply transmitting data at

higher speeds. Obviously, when channel impairments are considered, it is extremely important

to select an appropriate power-rate setting that can overcome significant channel losses, as

pointed out by Qiao et al. [94], for example.

10 15 20 25 30 35 40 45 50
272

274

276

278

280

282

284

286

Number of Nodes

E
ne

rg
y 

C
on

su
m

pt
io

n 
(J

)

1 Mbps
2 Mbps
5.5 Mbps
11 Mbps

Figure 4.5: Overall energy consumption for different transmit data rates and fixed power levels (TX =
1400 mW and RX = 900 mW).
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4.5 Conclusions

In this Chapter, we have introduced a simple analytical model to predict energy

consumption in saturated IEEE 802.11 single-hop ad hoc networks under ideal channel con-

ditions. In contrast to previous work that has focused on power consumption of IEEE 802.11

NICs without any channel contention, the opposite case was investigated here, with nodes

actively contending for channel access under saturation conditions. In that case, the passive

modes of the MAC operation dominate the energy consumption, whereas the active mode

has just marginal impact (even when different power settings were used). In addition, we

have found that the energy cost to transmit useful data grows almost linearly with the network

size, and that the transmission of large data payloads is more advantageous from the stand-

point of energy consumption under saturation conditions. Finally, we have also observed that

transmitting at higher data rates does not translate into significant energy savings in saturated

single-hop networks under ideal channel conditions.
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Chapter 5

A Modeling Framework for MAC

Protocols in Ad Hoc Networks

In this chapter, we introduce a new modeling framework for the analytical study of medium

access control (MAC) protocols operating in multihop ad hoc networks. The model focuses

on the interactions between the PHY and the MAC layers, and on the impact that each node

has on the dynamics of every other node in the network—all conveniently conveyed through

the use of interference matrices. A key feature of the model is that nodes can be modeled

individually, i.e., it allows a per-node setup of many layer-specific parameters. Moreover, no

spatial probability distribution or special arrangement of nodes is assumed; the model allows

the computation of individual (per-node) performance metrics for any given network topology

and radio channel model.
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5.1 Introduction

As mentioned in Chapter 1, the main task of the medium access control (MAC)

protocol of a computer network is to enable nodes to determine their right to access the avail-

able channel(s) while attempting to enforce a fair and efficient usage of the channel(s). To

accomplish this task, the MAC protocol makes use of input and/or feedback information that

other layers of the protocol stack may convey to it directly or indirectly. Typically, however,

the MAC layer is mostly interested in the information it receives from the underlying phys-

ical (PHY) layer regarding the state(s) of the channel(s) and/or the occurrence of any events

that are key to its operation (e.g., the successful transmission of a frame over the channel).

Based on the input/feedback information, the MAC protocol dynamically adjusts its behavior

in order to better allocate the channel(s) among competing nodes within the network.

The PHY layer, on the other hand, has the main job of receiving the bits of informa-

tion from the MAC layer and, at the MAC’s discretion, transmit the bits across the underlying

communication channel(s) as fast and reliable as possible, according to appropriate (de)coding

and (de)modulation schemes. The likelihood with which a transmission is successful will de-

pend on how well the signaling used defends against channel impairments and interference

from any source.

In wireless ad hoc networks, in particular, the signal transmissions from any node

can potentially interfere with signal receptions at any other node in the network due to the

broadcast nature of the radio channels. Hence, the quality of a radio link depends on the

transmission activity of every node in the entire system, whose aggregate signal powers can

severely degrade the signal-to-noise ratio (SNR) at a particular receiver and, consequently,
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compromise the successful reception of any on-going packet transmission. As a result, each

node’s transmission activity can affect the PHY-layer performance at every node in the net-

work, which, in turn, can affect back their MAC dynamics. Clearly, the dynamics of the MAC

layer is tightly connected to the dynamics of the PHY layer, and the cross-layer interactions at

each node will depend, fundamentally, on the activity of every node in the network.

In addition, because of radio wave propagation effects and multiaccess activity, con-

nectivity among nodes is not a deterministic “boolean function” and, therefore, the underlying

network topology is not as clearly defined as in wired networks, which makes interdependen-

cies among nodes a complex matter. For this reason, the performance experienced by each

node is a complex function of the signals used at the PHY layer, the scheduling established at

the MAC layer, and the radio topology of the network.

Unfortunately, the bulk of the published work on ad hoc networks has focused on

the modeling of medium access control schemes where ideal channel conditions and unreal-

istic assumptions are made. Under the argument of separating the issues strictly related to

the MAC operation from the issues intrinsically related to the physical layer, few studies have

attempted to incorporate physical layer aspects directly into the behavior of the MAC protocol,

i.e., explicitly modeling the impact of the physical layer on the dynamics of the MAC protocol.

Perhaps, more importantly, no attempt has ever been made to include not only the physical-

layer aspects explicitly into the model, but also to include the interdependencies among nodes

under a radio-based topology in a multihop ad hoc network. Although convenient for analyti-

cal modeling, it is not true that only the “one hop” neighbors of a node can cause interference

at a node.
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In this chapter, we introduce a new modeling framework for the analytical study of

any MAC protocol operating in multihop ad hoc networks. The model focuses on the inter-

actions between the PHY and the MAC layers, and on the impact that each node has on the

dynamics of every other node in the network. To account for the effects of both cross-layer in-

teractions and the interference among all nodes, a novel linear model is introduced with which

topology and PHY/MAC-layer aspects are naturally incorporated in what we define as inter-

ference matrices. A key feature of the model is that nodes can be modeled individually, i.e., it

allows a per-node setup of many layer-specific parameters. Moreover, no spatial probability

distribution or special arrangement of nodes is assumed; the model allows the computation of

individual (per-node) performance metrics for any given network topology and radio channel

model.

In the sequel, we build our modeling framework in probabilistic terms, i.e., we

express the input and/or feedback information conveyed to the MAC layer in terms of proba-

bilities, as well as the output of the MAC layer, i.e., the scheduling rates (transmission proba-

bilities).

5.2 Modeling the Medium Access Control (MAC) Layer

Let ϕi(t) denote a vector whose entries are the input and feedback information used

by a particular MAC protocol at each node i ∈ V at time t, where V is a set of |V | = n nodes

in the network. Because we are proposing a probabilistic model, we assume that the entries

of the vector ϕi(t) are, in fact, probabilities, i.e., they represent probabilities of events whose

outcomes are important input and/or feedback information to the operation of the MAC proto-
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col in place. In this sense, a MAC protocol can be seen as a stochastic dynamic system whose

input and feedback information are contained in the vector of probabilities ϕi(t), and the cor-

responding output is the scheduling rate τi(t). Therefore, in principle, the MAC operation can

be represented by some function that maps ϕi(t) into the desired output τi(t).

Strictly speaking, the MAC operation should be seen as a time-variant system, where

probabilities should also be time-variant (a stochastic process). However, we will assume that

in the long-run (or in steady-state), the operation of the MAC protocol can be represented

by a time-invariant (linear or non-linear) function hi(·) relating the steady-state probability

vector ϕi to the steady-state scheduling rate τi, i.e., if we let τi = limt→∞ τi(t) and ϕi =

limt→∞ ϕi(t), we assume that there exists a function hi(·) such that

τi = hi(ϕi), i ∈ V, (5.1)

where the subscript i in the mapping function hi(·) denotes a node-specific instantiation of the

MAC protocol in use.

The number and nature of input/feedback entries in the vector ϕi(t) will depend on

the MAC protocol in place and the scenarios investigated. For instance, one should expect

τi to be a function of the steady-state probability that a packet is available at a node’s input

queue, i.e., that the queue is not empty. Consequently, τi should also be a function of the input

data traffic distribution at node i ∈ V . Many times, however, the throughput of an ad hoc

network is studied by assuming saturation at all nodes, i.e., all buffers are considered to be

full [122]. In this case, one is normally concerned with the maximum throughput attainable

by the network when all nodes are actively seeking access to the channel.

In the case of carrier sense-based MAC protocols, an example of relevant feedback
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information from the PHY layer is the probability that the channel is sensed idle by a node

that wants to transmit a frame over the channel. In such protocols, a node only attempts to

transmit a frame if the channel is sensed idle, i.e., if the signal power captured by the node’s

antenna(s) is below some signal power threshold, meaning that no on-going transmission over

the channel is happening within the node’s immediate neighborhood. Otherwise, the node

refrains from transmitting the frame.

As far as a reliable delivery service at a given MAC protocol is concerned (con-

tention or schedule-based MAC), the single most important feedback information is the prob-

ability that a frame transmission is successful. This is, in fact, the main information on which

the MAC protocol basis its behavior in order to schedule retransmissions and transmissions of

new frames. This information is the key link between the PHY and MAC layers. Depending

on how well the signaling used defends against channel impairments determines the evolution

of the MAC protocol itself. Moreover, due to the inherent broadcast nature of wireless net-

works, this feedback probability depends on the activity of every other node in the network,

which, in turn, depends on how well the PHY layer guarantees the minimum interference

among simultaneous transmissions and how well the MAC protocol avoids the concurrent

scheduling of potential interfering transmissions over the channel.

In the next section, we model the impact of the PHY layer with respect to some of

the aforementioned feedback probabilities.
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5.3 Impact of the Physical (PHY) Layer

In this section, we present the modeling of the impact of the PHY layer by intro-

ducing the computation of some feedback probabilities. First, we present the computation of

the successful frame reception probability, which reflects a node’s capability to successfully

receive a frame transmitted to it. Once this probability is known, we can compute the prob-

ability of a successful handshake, which represents the most important feedback information

for a reliable delivery service at the MAC layer. Lastly, we show how to compute the prob-

ability that the channel is busy, a key information that is needed within the class of carrier

sense-based MAC protocols.

5.3.1 The Successful Frame Reception Probability

The quality of the radio link between any two nodes in an ad hoc network may

vary considerably over time, even in the case when the two nodes are within range of each

other. The time-variant nature of a radio link is due to physical layer aspects, as well as

the transmission activity of all other nodes in the network, which is controlled by the MAC

scheme. Individually, a node’s transmission may not interfere with some packet reception

at a distant node. However, collectively, the aggregate interference from many simultaneous

transmissions might do.

With few exceptions (e.g., [71, 151]), most prior models of MAC protocols assume

that all packets received at the same time at a given receiver “collide” and, therefore, are

destroyed. This assumption is reasonable if the powers of the received signals are nearly the

same. In most situations, however, the powers of the received signals are subject to large-
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scale path loss propagation, shadowing, and small-scale multipath fading [111]. Even when

packets from different nodes overlap in time, it may still be possible to successfully decode the

packet with the strongest received signal strength—the so-called capture phenomenon [77].

Moreover, a number of choices in system design at the PHY layer have a direct impact on the

successful reception of a packet at a given receiver.

For all the above considerations, a link in a wireless ad hoc network may generally

be seen as an asymmetric channel, and the conditions for a packet to be successfully received

at one end of the link may be significantly different at the other end. Therefore, we need to

consider network topology in a broader sense, in which asymmetries, unpredictability, and

physical-layer aspects are explicitly incorporated into the model.

For the purposes of this work, we classify the channel signaling methods into two

types [122]: narrowband and spread-spectrum systems. In narrowband signaling, data bits

are modulated directly onto the carrier. On spread-spectrum systems, some form of coding is

used to get a much wider bandwidth than narrowband schemes do for the same data rate. In

many cases, spread-spectrum signaling is the signaling method of choice because of its anti-

jamming capabilities, robustness to multi-path effects, lower power spectrum density, and

potential for multiuser access through CDMA techniques, i.e., the use of orthogonal codes

that can overlap in time with little or no effect on each other. As an example, the IEEE 802.11

standard supports both direct sequence spread spectrum (DSSS) and frequency-hopped spread

spectrum (FHSS) systems [64].

In this work, we assume a direct sequence spread spectrum ad hoc network. In such

networks, multiple access interference (MAI) plays a major role on network capacity [59],
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[88]: in the demodulation of each signal, signals from other nodes transmitting simultaneously

over the channel appear as interference. The level of such interference varies according to

the number of active nodes at any time (dictated by the underlying medium access control

scheme). For this reason, not only capacity, but many quality of service (QoS) measures in

wireless ad hoc networks are intrinsically dependent on the received signal-to-interference-

plus-noise density ratio (SINR). More specifically, let P r
k denote the received signal power

at node r for a signal transmitted by node k ∈ V . Then, the signal-to-interference-plus-noise

density ratio SINRr
i for a signal transmitted by node i and received at node r, is given by

(using a conventional matched filter receiver) [127]:

SINRr
i =

P r
i Li∑

j∈V
j 6=i

χjP r
j + σ2

r

, (5.2)

whereLi is the spreading gain (or bandwidth expansion factor) of the spread-spectrum system,

σ2
r is the background or thermal noise power at the front end of the receiver r, and χj is an

on/off indicator, i.e.,

χj =





1, if j transmits at the same time,

0, otherwise.
(5.3)

In Eq. (5.2), it is assumed that nodes use long, orthogonal pseudo-random se-

quences [127], and that the thermal and background noise is modeled as a white Gaussian

noise process. The same assumptions are used in such simulators as Glomosim, Ns-2, and

Qualnet [105].

Each time node i transmits a frame to node r, the (instantaneous) multiple access

interference (MAI) level at node r depends on which nodes in V transmit concurrently with
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node i, as indicated by the variable χj , a Bernoulli-distributed random variable with prob-

ability τj , the probability that node j transmits a frame at any time, according to the MAC

protocol in place. Because |V | = n, there are exactly 2n−2 combinations of potential active

nodes (interferers) transmitting concurrently with i (excluding both transmitter i and receiver

r). Let {crik} k=1,...,2n−2 denote the set of such combinations, and Cr
i be a random variable

that indicates the occurrence of a specific combination crik of interferers. We also assume, for

simplicity, that when node i transmits a frame to node r, the set of interferers remains the

same throughout the entire transmission of the frame. In reality, of course, some nodes may

become active or inactive during the course of a frame transmission. However, this assump-

tion is reasonable if frames are short and transmission rates are high. Consequently, during the

reception of a frame—and for a fixed set of interferers—the bit-to-bit variations that may oc-

cur in SINRr
i results from RF propagation effects only. Typically, the received signal powers

P r
i are subject to large-scale path loss, shadowing, and small-scaling multipath fading.

Given the previous considerations, the probability sr
i that a frame transmitted by

i is successfully received at r can be obtained by considering the set {cr
ik} k=1,...,2n−2 of all

possible combinations of active nodes in V − {i, r}, as follows:

sr
i = P{successful frame reception} =

∑

k

P{successful frame reception ∩ Cr
i = crik}

=
∑

k

P{succ. frame reception | Cr
i = crik}P{Cr

i = crik}

=
∑

k

f(crik)P{Cr
i = crik}, (5.4)

where we wrote f(crik) to emphasize the fact that P{succ. frame reception | Cr
i = crik} is

a function of the specific combination crik of interferers. Its functional form will depend on
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the specific choice of radio channel model and such PHY-layer aspects as modulation and

demodulation schemes, channel coding, receiver design, and the like.

The above formalism allows the consideration of any radio channel model and PHY-

layer aspect for computation of the probability f(crik) of successful frame reception condi-

tioned on a certain MAI level. For instance, one could choose to model the impact of a

specific modulation scheme under correlated bit errors during frame reception.

Therefore, depending on which nodes are active at the time node i transmits a frame

to node r, there can be different values for the SINR and, consequently, different bit-error

probabilities. Hence, from Eq. (5.4), one needs to know the frame error probabilities for all

2n−2 possible combinations {crik}, which depends on the joint probabilities of occurrence

of all the combinations {crik} k=1,...,2n−2 . The exact functional form of the joint probabilities

depends on the specific MAC protocol in use.

5.3.2 The Successful Handshake Probability

Previously, we have considered the successful frame reception probability. From

the point of view of a reliable delivery service at the MAC layer, a frame is considered to be

successfully transmitted at the intended receiver if a successful acknowledgment is received

in response to the frame that was previously sent. Therefore, we need to consider the success-

ful handshake probability, which we define as the joint probability that both the transmitted

frame and its respective acknowledgment are received successfully. More specifically, two

events need to happen for a node i ∈ V to consider its frame successfully transmitted to a

node r ∈ V : the successful reception of i’s frame at r, and the successful reception of r’s
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acknowledgment at i. Therefore, if we denote by qr
i the probability of a successful handshake

between nodes i and r, and if we take into account all possible combinations of interferers at

nodes i and r (indicated by the random variables C i
r and Cr

i , respectively), we have that

qr
i = P{DATA successful,ACK successful}

=
∑

k

∑

l

P{DATA suc., Cr
i = crik,ACK suc., Ci

r = cirl}

=
∑

k

∑

l

P{ACK suc.|Ci
r = cirl,DATA suc., Cr

i = crik}P{Ci
r = cirl|DATA suc., Cr

i = crik}

P{DATA suc.|Cr
i = crik}P{Cr

i = crik}

=
∑

l

∑

k

f(cirl)f(crik)P{Ci
r = cirl|DATA succ., Cr

i = crik}P{Cr
i = crik}. (5.5)

In Eq. (5.5), the probability that the set of active interferers C i
r at node i is cirl, l ∈ V,

is conditioned on the fact that the set of active interferers Cr
i at node r is crik, k ∈ V . This

is because, in general, the set of active interferers at node i may not necessarily be the same

as the set of interferers at node r. Moreover, the likelihood that a node is active when r

sends its ACK back to i can change if it knows, somehow, that some specific set of nodes has

already become active during the transmission of i’s DATA frame to r. Such dependencies

will rely, among other things, on the MAC protocol in place, the size of DATA frames, etc..

For instance, on one hand, we could have a contention-based MAC protocol (e.g., ALOHA)

where nodes would attempt to transmit packets independently of each other without listening

to the channel (carrier sensing). In this case, the fact that some nodes have already become

active during the transmission of the DATA frame will not prevent other inactive nodes to

become active during the ACK transmission. On the other hand, in a carrier-sensing-type

of MAC protocol, the nodes that have detected the transmission of the DATA frame in the
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channel will defer their transmission to a future time that will probably not coincide with the

transmission of the subsequent ACK frame (in general, ACK frames are very short).

The previous development considered the case where both DATA and ACK frames

were of fixed size. However, if both (or any) of the DATA and ACK frames are of variable size,

and their size distributions are known, Eq. (5.5) can be easily modified to include such cases.

More specifically, if the DATA frame size is B bytes long, with probability mass function

P{B = b}, and the ACK frames are assumed to be of fixed size (which is generally the case),

Eq. (5.5) modifies to

qr
i = P{DATA successful,ACK successful}

=
∑

k

∑

l

∑

b

P{DATA suc., B = b, Cr
i = crik,ACK suc., Ci

r = cirl}

=
∑

k

∑

l

∑

b

f(cirl)f(crik)P{Ci
r = cirl|DATA suc., B = b, Cr

i = crik}P{Cr
i = crik|B = b}

P{B = b}, (5.6)

where now f(cirl) = P{ACK suc. | Ci
r = cirl,DATA suc., B = b, Cr

i = crik} and f(crik) =

P{DATA succ.|B = b, Cr
i = crik}. In other words, the probability of having the set of inter-

ferers Cr
i = crik is conditioned on the DATA frame size B = b. For instance, in the ALOHA

protocol, the bigger the DATA frame, the higher the probability that more nodes will be trans-

mitting at about the same time that the DATA frame is being received. On the other hand, in

other protocols, it might happen that the probability of having a specific set of interferers could

be considered independent of the DATA frame size, i.e., P{Cr
i = crik|B = b} = P{Cr

i = crik}.

We just showed how to compute the successful handshake probability when the

handshake involves the exchange of two frames only: a DATA frame and an ACK frame. Some
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classes of MAC protocols use a four-way handshake mechanism. In those cases, the previous

development can be easily extended, and one will need to know the four successful frame

reception probabilites with respect to the four frames that were exchanged (as represented by

the functions f(·) in Eq. (5.6)). Finally, it may happen that one needs to know the probability

of unsuccessful handshake due to errors in one of the four frames. In that case, one needs to

know the probability of unsuccessful reception of a particular frame, which is simply 1−f(·).

Based on that, one can compute the probability of unsuccessful handshake due to an error in

one of the frames. For instance, if the error was on the third frame, the first two are transmitted

correctly and the third is not (and the fourth is not considered because it will not be sent).

5.3.3 The Case of Carrier Sense-Based MAC Protocols

In the specific case of carrier sense-based MAC protocols, a fundamental feedback

information needed by every node in the network is the probability that the channel is per-

ceived “busy” while a node is trying to transmit its own frame. At the PHY layer, the events

that are related to the occurrence of a “busy channel” are different from the events involved

with a “successful frame reception”. The goal of the carrier sense activity is to detect if the sig-

nal power captured by a node’s antenna(s) is above some particular power threshold, whereas

the reception of a frame deals with the ability of a node’s receiver to successfully decode a

frame, which depends on many PHY-layer aspects such as modulation/demodulation scheme

and receiver design.

Because the carrier sense activity depends on the amount of signal power captured

by a node’s antenna(s), the probability that the channel is busy depends, fundamentally, on
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which nodes in the network are transmitting simultaneously, at a given time instant, and their

respective contribution to the aggregate signal power captured by the antenna(s) of a node that

is listening to the channel (including any background and/or thermal noise). It is important to

mention that, depending on PHY-layer aspects such as antenna reception mode (e.g., omni-

directional or directional) or channel used during carrier sense, the impact of the activity of

other nodes can be significant different from that when the node is actually receiving a frame.

Let P i
cs denote the perceived signal power at node i ∈ V when node i is performing

carrier sensing of the channel, and let γ denote the signal power threshold above which the

channel is considered to be “busy”. As mentioned before, the perceived signal power P i
cs

depends on which nodes k ∈ V transmit simultaneously at a given time instant, and their

respective contribution to the perceived signal power P i
cs. Therefore, the probability that the

channel is detected busy depends on which nodes k ∈ V are active at the time node i is per-

forming the carrier sense in the channel. Consequently, we need to know which combinations

of active nodes k ∈ V lead to a perceived signal power P i
cs greater than the threshold γ. If Sr

i

denotes the set of all possible combinations of active nodes k ∈ V such that P i
cs ≥ γ then,

the probability that node i perceives that the channel is busy is given by the probability of

occurrence of any of the combinations in Sr
i . We use the superscript r to indicate that node i

senses the channel before transmitting to a node r. This is to allow the treatment of different

carrier sensing mechanisms that condition the sensing activity on the target receiver r (e.g.,

the directional virtual carrier sensing protocol [114]). If cri denotes each of the combinations

in Sr
i , and Cr

i is a random variable that indicates the occurrence of a specific combination
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cri ∈ Sr
i , then, from the exclusiveness of the events Cr

i = cri ∈ Sr
i , we have

P {channel is busy for node i} = P
{
P i

cs ≥ γ
}

= P




⋃

cr
i∈S

r
i

{Cr
i = cri }





=
∑

cr
i∈S

r
i

P {Cr
i = cri } , (5.7)

which is nothing but the sum of the probabilities of the occurrence of all possible combinations

of active nodes k ∈ V such that the perceived signal power P i
cs at node i is greater than the

threshold γ.

5.4 Impact of Flow Distribution

So far, we have only considered the computation of the successful handshake prob-

ability when a node has a packet to transmit to a specific receiver, i.e., the computation of

the successful handshake probability conditioned on a specific target receiver r ∈ V . In real-

ity, however, each packet that arrives at a node’s input queue(s) may be potentially addressed

to a distinct receiver within the node’s one-hop neighborhood, as specified by the packet’s

header (in the case of unicast traffic, in particular). Each time this node attempts to transmit

a frame, the conditions for having a successful handshake will depend on the selected target

receiver, since its location will determine the impact of potential interferers. In addition, each

packet may be assigned a different priority, depending on its target destination, data content,

or if some sort of per-flow bandwidth allocation scheme is used, with packets being served

distinctly according to some queueing scheduling discipline, for example. In fact, even if a

single FIFO queue is used, the steady-state distribution of the aggregate flow at a node’s input

queue may depend on how traffic multiplexing occurs within a certain time period. Therefore,
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within a time interval long enough, every time a node i ∈ V decides to transmit a frame, it

will do so by selecting a target receiver according to some probability that will be a function

of the factors just considered.

Now, let us denote Ri the set of nodes to which node i has a packet to transmit

during the course of some observation time interval long enough, and let ρr
i be the probability

that node r ∈ Ri is the intended receiver of i at any instant within this time interval. Given

that, the steady-state probability qi that node i has a successful handshake will be given by

qi = P{successful exchange} =
∑

r∈Ri

P{successful exchange ∩ r is the receiver}

=
∑

r∈Ri

P{successful exchange | r}P{r is the receiver}

=
∑

r∈Ri

qr
i ρ

r
i . (5.8)

5.5 Inter-Layer Dependence: The Nonlinear Multivariate System

At the core of the computation of the probability of successful frame reception in

Eq. (5.4), the probability of successful handshake in Eqs. (5.5), (5.6), and (5.8), and the busy

channel probability in Eq. (5.7), is the computation of the probabilities of possible combina-

tions of active nodes (interferers) in the network at a given time instant. These probabilities

are, in effect, probabilities of joint events related to the transmission probabilities (scheduling

rates) of all nodes in the network. Therefore, all the aforementioned feedback probabilities

depend, fundamentally, on the transmission probabilities of every node in the network.

Indeed, such fundamental dependence on the nodes’ schedule discipline is a di-

rect consequence of the inherent broadcast nature of the radio channels in ad hoc networks.
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Consequently, it is reasonable to expect that many (or all) of the PHY-related input/feedback

probabilities contained in the vector ϕi of node i ∈ V depend, fundamentally, on the underly-

ing scheduling discipline of every node in V , i.e., on the vector of transmission probabilities

τ = [τ1 τ2 · · · τn]T . In other words, many of the input/feedback information conveyed to the

MAC protocol at each node can be affected by the scheduling discipline imposed by the MAC

protocol itself. Such observation clearly shows that the dynamics of the MAC layer is tightly

connected to the dynamics of the PHY layer (and vice-versa).

Because not all input/feedback probabilities contained in ϕi will be dependent on τ ,

we divide the variables in ϕi in two sets: the variables that fundamentally depend on the trans-

mission probability vector τ , and the ones that do not. Let the l-tuple ν i = [νi1 νi2 . . . νil]
T

be a vector containing the l entries of ϕi that depend on τ , and ωi = [ωi1 ωi2 . . . ωim]T be

an m-tuple with the remaining entries of ϕi (where ϕi is an (l + m)-tuple). For the vector

ωi, we assume that all the input/feedback information it contains is known and characterized

a priori. On the other hand, for each νik ∈ νi ⊆ ϕi, k = 1, . . . , l, we postulate that there

exists some (linear or non-linear) function gik(·) such that

νik = gik(τ ), k = 1, 2, . . . , l, ∀ i ∈ V. (5.9)

Equation (5.9) represents the mapping that is performed on the scheduling rates τ to

generate the input/feedback information νik needed by the MAC layer at node i. Essentially,

Eqs. (5.1) and (5.9) form a coupled nonlinear multivariate system on the variables τi and

νik, k = 1, . . . , l, ∀ i ∈ V, (the ωi’s, are assumed to be known a priori). Together, they

allows us to consider not only the interdependencies between the PHY and MAC layers, but

also the interdependencies among all nodes in the network. Nevertheless, solving such a
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nonlinear system in arbitrary topologies constitutes an extremely complex task if we consider

the number of possibilities for the network sizes and the functional forms for hi(·) and gik(·).

Furthermore, checking for the existence of a solution for the system can be very cumbersome,

if not impossible. Hence, to simplify our modeling problem and to better understand the

effects of different protocol parameters on the probabilities τi and νik, we linearize the above

nonlinear system. Next section we present our approach to this problem.

5.6 Making the Model Tractable: The Interference Matrices

In this section, we present a linear approximation to the coupled nonlinear multi-

variate system formed by Eqs. (5.1) and (5.9), which will lead us to the introduction of the

concept of interference matrices. To begin with, we present linear approximations to the suc-

cessful handshake probability in Eq. (5.6), and the probability that the channel is sensed busy

in Eq. (5.7).

5.6.1 Linear Approximation to the Successful Handshake Probability

Let us consider the computation of the probability qr
i that node i has a successful

handshake with node r. From Eqs. (5.5) and (5.6), one of the key problems in computing

qr
i is the knowledge of the probabilities of the combinations {crik}k=1,...,2n−2 of active inter-

ferers, as opposed to the successful reception probability f(·), which is known for any given

MAI level. The exact functional form of the joint probabilities depends on the specific MAC

protocol in use. However, finding an exact functional forms is inherently a difficult task,

given the complexity of the interactions among the nodes, specially under multihop scenarios.
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Moreover, because the number of possible combinations of active interferers increases expo-

nentially with the number of nodes, computing the probabilities of all combinations becomes

prohibitive with just a few tens of nodes. Fortunately, we can attain a linear approximation to

the computation of qr
i for any multihop ad hoc network by taking advantage of the necessary

behavior of any MAC protocol. More specifically, we exploit the following three considera-

tions:

C1) High contention: When contention among nodes is high, the probability τk

that node k ∈ V attempts to transmit a frame, at any time, is expected to be arbitrarily small.

C2) MAC efficiency: If nodes j and k can interfere with each other’s frame ex-

changes significantly—directly or indirectly—e.g., they are located up to two hops away from

each other, it is expected that the MAC protocol operates in a way that the probability that

node j schedules a transmission at a particular time instant, given that node k has already

scheduled a transmission at the same time instant, is arbitrarily small. This is what the de-

sired operation of any MAC protocol should be: to prevent interfering nodes from scheduling

transmissions at about the same time, “clearing the floor,” and guaranteeing that a success-

ful handshake occurs. The more efficient the MAC protocol is, the smaller this conditional

probability becomes.

C3) Impact of “Cascade Effect”: If two nodes j and k are very distant from each

other, such that their signal powers cannot interfere significantly with each other’s frame ex-

changes (or have their signal powers blocked somehow), their decisions to initiate a frame

transmission at any time are considered to be independent of each other. In reality, though,

two nodes very distant from each other can still have an indirect impact on each other’s trans-
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mission due to a “cascade effect”: a node’s decision to transmit a frame depends on its neigh-

bors’ decisions to transmit, which, in turn, depends on their neighbor’s neighbors decisions to

transmit, and so on. However, for all practical purposes, transmission decisions can be con-

sidered independent if nodes are sufficiently distant from each other (e.g., more than two hops

away). Otherwise, consideration C2 applies.

Given the above considerations, we can now focus on the computation of the proba-

bilities of the joint events contained in the combinations {crik}k=1,...,2n−2 . Among all possible

combinations, we are particularly interested in two cases: (1) the combination corresponding

to the event where “no node transmits at the given time instant,” and (2) the combinations cor-

responding to the events where “only node k ∈ V transmits at the given time instant.” If the

event “no node transmits at the given time instant” occurs, the MAI level at node r is null and,

consequently, the SINRr
i is the highest possible, maximizing the conditional probability f(·)

of a successful frame reception at r. In the second case, where “only node k ∈ V transmits

at the given time instant,” the impact of node k alone is taken into account on the degradation

of SINRr
i during a frame reception at node r, i.e., the “weight” of the interference caused by

node k at node r is evaluated.

Let Ai, i ∈ V , represent the event that “node i transmits a frame at the given

time instant”. Hence, P{Ai} = τi. Now, the event “no node transmits at the given time

instant” is represented by the joint event
⋂n

i=1Ai, where Ai is the complement set of Ai.

From DeMorgan’s rules,

P

{
n⋂

i=1

Ai

}
= P

{
n⋃

i=1

Ai

}
= 1 − P

{
n⋃

i=1

Ai

}
. (5.10)
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where

P

{
n⋃

i=1

Ai

}
=

n∑

i=1

P {Ai} −
∑

j

∑

k

P{Aj ∩Ak} +
∑

j

∑

k

∑

l

P {Aj ∩Ak ∩Al} + · · ·

· · · + (−1)n+1P

{
n⋂

i=1

Ai

}
. (5.11)

Therefore, the computation of P {⋃n
i=1Ai} in Eq. (5.11) requires the knowledge of

the probabilities of simultaneous transmissions from all possible subsets of nodes. However,

according to consideration C2, if nodes j and k can interfere to each other’s frame exchanges

significantly, it is expected that the MAC protocol will do its best to prohibit both nodes from

transmitting at about the same time, i.e., we should expect that P{Aj |Ak} � 1. In addition,

because P{Ak} � 1 under high contention (from consideration C1), for any two nodes j and

k we should have

P{Aj ∩Ak} = P{Aj |Ak}P{Ak} ≈ 0. (5.12)

On the other hand, from consideration C3, if nodes j and k are very distant (or phys-

ically blocked) from each other, their schedulings can be considered practically independent.

In such cases, and under high contention,

P {Aj ∩Ak} = P{Aj}P{Ak} = τjτk ≈ 0. (5.13)

Extending our reasoning to the probabilities of the joint events that three or more

nodes transmit at the same time in Eq. (5.11), we can approximate Eq. (5.10) by

P

{
n⋂

i=1

Ai

}
≈ 1 −

n∑

i=1

P {Ai} . (5.14)

Note that, if nodes are allowed to transmit independently of each other, regardless

of the state of their neighbors (e.g., ALOHA), all the joint probabilities in Eq. (5.11) reduce
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to product forms like in Eq. (5.13) and, under high contention, Eq. (5.14) approaches equality.

In the other extreme case, if the MAC protocol is scheduled-based and can guarantee that one

and only one node transmits at any given time, i.e., Ai∩Aj = ∅ for all i 6= j, we simply have1

P

{
n⋃

i=1

Ai

}
=

n∑

i=1

P {Ai} , (5.15)

and, in this case, Eq. (5.14) holds with equality. Such a situation should be expected from an

efficient MAC protocol operating in a single-channel fully-connected network, for example.

Indeed, such exclusiveness of events is what is generally aimed in the operation of an efficient

MAC protocol with respect to nodes within some neighborhood sharing the same channel in

a wireless multihop ad hoc network.

Now, let us consider the events where “just one node transmits at the given time in-

stant”. For the sake of argument, let us assume that node 1 is the transmitting node. Therefore,

we are interested in computing the probability of the event
(⋂n

i=2Ai

)⋂
A1, which is

P

{(
n⋂

i=2

Ai

)
⋂
A1

}
= P

{
n⋂

i=2

Ai

∣∣∣A1

}
P{A1} =

[
1 − P

{
n⋃

i=2

Ai

∣∣∣A1

}]
P{A1}

= P{A1} − P

{
n⋃

i=2

Ai

∣∣∣A1

}
P{A1}. (5.16)

where

P

{
n⋃

i=2

Ai

∣∣A1

}
=

n∑

i=1

P {Ai|A1} −
∑

j,k

P{Aj ∩Ak|A1} + · · ·

· · · + (−1)n+1P

{
n⋂

i=2

Ai

∣∣∣A1

}
. (5.17)

Using the same arguments based on considerations C1 to C3, and observing that all
1This is a corollary of the axioms of probability.
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terms in Eq. (5.17) are multiplied by P{A1} � 1 in Eq. (5.16), we obtain

P

{(
n⋂

i=2

Ai

)
⋂
A1

}
≈ P{A1}. (5.18)

Having considered approximations to the probabilities of some of the events cr
ik, k =

1, . . . , 2n−2, we need to look at the computation of the conditional probabilities relating the

two sets of active interferers Ci
r and Cr

i in Eqs. (5.5) or (5.6). As mentioned in Section 5.3.2,

the set of active interferers during the reception of an ACK may be dependent on which nodes

were active during the transmission of the previous DATA frame. Again, such dependencies

are intrinsically related to the MAC protocol in use and, for this reason, we will focus on two

cases that represent the two extreme behaviors observed in the operation of a MAC protocol.

In the first case, we assume that the set of active nodes C i
r during the reception of an ACK

is the same as the set Cr
i of active nodes during reception of the DATA frame. The rationale

for this assumption is that ACK frames are usually of fixed size and much smaller than DATA

frames. Therefore, during the reception of an ACK, it is very likely that the nodes that were

active during the DATA frame transmission may still be active during the subsequent ACK

transmission (specially if DATA frames are of variable sizes). In this case, we have

P
{
Ci

r = crik|DATA suc., Cr
i = crik

}
= 1. (5.19)

Even in the case when DATA frames are of fixed size, nodes may become active

at slightly different times from the instant that a node started transmitting a DATA frame.

This could happen because of the delays generally incurred when switching among modes

(receive/transmit, idle/transmit, etc.). In this case, interfering nodes could become active when

a DATA frame was already being transmitted in the channel, overlapping with both DATA
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and subsequent ACK frames, specially if ACKs are sent back without much delay, almost

immediately after receiving the DATA frame. In the other extreme case, both sets C i
r and Cr

i

can be considered independent of each other, i.e.,

P
{
Ci

r = cirl |DATA suc., Cr
i = crik

}
= P

{
Ci

r = cirl

}
, (5.20)

in which case we have a scenario where interfering nodes can become active independently

of what happened during the previous DATA frame transmission. This is likely the most

aggressive scenario as far as interference is concerned, because it allows for the occurrence of

sets of interferers that would not normally happen in the operation of many MAC protocols.

For the computation of qr
i to become complete, we need to treat the case when

DATA frames are of variable size, as expressed in Eq. (5.6). Again, for tractability, we assume

that the set of active interferers is independent of the frame size, i.e.,

P {Cr
i = crik|B = b} = P {Cr

i = crik} . (5.21)

Given all previous considerations, we can now compute an approximation for qr
i .

We will consider the case where the set Ci
r of active nodes during reception of an ACK is the

same as the set Cr
i of active nodes during reception of the DATA frame. From Eq. (5.6),

qr
i =

∑

k

∑

l

∑

b

f
(
cirl

)
f (crik)P

{
Ci

r = cirl|DATA suc., B = b, Cr
i = crik

}
×

× P{Cr
i = crik|B = b}P{B = b}

=
∑

k

∑

b

f
(
cirk

)
f (crik)P{Cr

i = crik}P{B = b}

=
∑

k

f
(
cirk

)
f
(
crik
)
P {Cr

i = crik} , (5.22)
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where f(·) indicates the average of f(·) with respect to the frame size B. If we take just the

two sets of events previously considered, qr
i is approximated by

qr
i ≈ f (crio)f (ciro)P {no node transmits} +

∑

k

f
(
cirk

)
f
(
crik
)
P {only k transmits} (5.23)

The probability of the events above are given by Eqs. (5.14) and (5.18) respectively,

where P{Ak} = τk, ∀ k ∈ V . Hence,

qr
i ≈ πr

i

(
1 −

∑

k∈V

τk

)
+
∑

k∈V

πr
ikτk, (5.24)

where πr
i = f(cri0)f(cir0), and πr

ik = f(cirk)f(crik). Collecting the terms in τk, we have

qr
i ≈ πr

i −
∑

k∈V

πr
i τk +

∑

k∈V

πr
ikτk = πr

i −
∑

k∈V

(πr
i − πr

ik) τk

= πr
i −

∑

k∈V

crikτk, (5.25)

where crik = (πr
i − πr

ik). It is interesting to observe that crik in Eq. (5.25) provides the “weight”

of node k ∈ V with respect to its impact on the successful handshake probability between

nodes i and r. More specifically, in the event that “no node transmits,” the product of proba-

bilities of successful frame reception f(·) attains its maximum, πr
i , because there is no MAI.

If the potential interferer k is far from both nodes i and r, the contribution of its signal power

to the MAI level will be practically null and, in this case, πr
ik → πr

i , i.e., crik → 0, canceling

the impact of node k in the successful handshake probability qr
i . On the other hand, if node

k ∈ V is very close to both (or either) nodes i and r, its signal power can be sufficiently high

to deteriorate the SINR at both (or either) nodes, compromising their handshake. In that case,

πr
ik → 0, i.e., crik → πr

i , and the “weight” of node k is equivalent to saying that “node k

should not transmit when nodes i and r are attempting to establish a handshake.”
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Finally, let us consider the impact of the flow distribution, as described in Sec-

tion 5.4. For that, we take the probability of successful handshake to a specific receiver, as

computed in Eq. (5.25), and substitute into Eq. (5.8), which gives the overall steady-state

probability qi that node i has a successful handshake with the nodes r ∈ Ri. Hence,

qi =
∑

r∈Ri

(
πr

i −
∑

k∈V

crikτk

)
ρr

i =
∑

r∈Ri

πr
i ρ

r
i −

∑

r∈Ri

∑

k∈V

crikτkρ
r
i

= πi −
∑

k∈V

cikτk, (5.26)

where πi =
∑

r∈Ri
πr

i ρ
r
i and cik =

∑
r∈Ri

crikρ
r
i .

5.6.2 Linear Approximation to the Busy Channel Probability

In this Section, we obtain a linear approximation to the busy channel probability

introduced in Section 5.3.3. For this purpose, we use similar arguments as the ones used

previously to obtain a linear approximation to the successful handshake probability. From our

remarks in Section 5.3.3, if a node i ∈ V is in carrier-sense mode, the probability that node i

perceives that the channel is “busy” is the probability that P i
cs ≥ γ, where P i

cs is the aggregate

signal power captured by the antenna(s) of node i, and γ is the signal power threshold above

which the channel is considered to be “busy”. As we noticed before, such probability depends

on which nodes in V transmit simultaneously over the channel at a given time instant, and

what is their contribution to the aggregate signal power captured by the antenna(s) of node

i (including any background and/or thermal noise). So, if S r
i denotes the set of all possible

combinations of active nodes k ∈ V such that P i
cs ≥ γ, then the probability that node i

perceives that the channel is busy is given by the probability that any of the combinations
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of active nodes in Sr
i occurs. If cri denotes each of the combinations in Sr

i , and Cr
i is a

random variable indicating the occurrence of a specific combination cr
i ∈ Sr

i , then, from the

exclusiveness of the events Cr
i = cri ∈ Sr

i , we showed in Eq. (5.7) that

P {channel is busy for node i} = P
{
P i

cs ≥ γ
}

= P




⋃

cr
i∈S

r
i

{Cr
i = cri }





=
∑

cr
i∈S

r
i

P {Cr
i = cri } ,

Hence, to obtain a linear approximation, we pick all combinations cr
i ∈ Sr

i in which

“only node k transmits and its individual contribution to the aggregate signal power P i
cs is

greater than or equal to γ (including background and/or thermal noise).” In other words, we

approximate Eq. (5.18) by

P {channel is busy for node i} ≈
∑

cr
i∈S

r
i

P {Cr
i = cri where only one node transmits} ,

(5.27)

From arguments similar to the ones used Section 5.6.1, and from Eq. (5.16), we have

P {channel is busy for node i} ≈
∑

k∈Sr
i

τk =
∑

k∈V

dr
ikτk, (5.28)

where

dr
ik =





1, if k ∈ Sr
i ⊆ V

0, otherwise.
(5.29)

Now, taking into account all nodes to which node i has a packet to deliver, i.e.,

taking into account the impact of flow distribution, we have

gi =
∑

r∈Ri

(
∑

k∈V

dr
ikτk

)
ρr

i =
∑

k∈V


∑

r∈Ri

dr
ikρ

r
i


 τk =

∑

k∈V

dikτk, (5.30)
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Observe that, if node k ∈ V is such that dr
ik = 1, ∀ r ∈ Ri, then

∑
r∈Ri

dr
ikρ

r
i = 1,

indicating that node k has a direct impact on the carrier sensing mechanism when i attempts

to transmit a frame to all of its potential receivers in Sr
i .

5.6.3 The Interference Matrices

Now that we have shown how to obtain a linear approximation to two examples

of feedback probabilities, we will proceed in this section with the linear approximation of

the general problem stated in Eqs. (5.1) and (5.9). As defined in Section 5.5, the vector

ϕi of input/feedback probabilities is a vector containing all entries of ν i and ωi, i.e., ϕi

is the (m + l)-tuple ϕi = [νi1 νi2 . . . νil ωi1 ωi2 . . . ωim]T . If hi(ϕi) is an infinitely often

differentiable function within a region around the point ϕo
i = [νo

i1 ν
o
i2 . . . ν

o
il ω

o
i1 ω

o
i2 . . . ω

o
il]

T

in the (m+ l)-dimensional space, then the Taylor series expansion of hi(ϕi) around the point

ϕo
i is given by [135]

hi(ϕi) =
∞∑

j=0





1

j!

[
n∑

k=1

(ϕik − ϕo
ik)

∂

∂ϕ′
ik

]j

h(ϕ′
i)





ϕ
′

i=ϕ
o
i

. (5.31)

Hence, a first-order approximation of τi = hi(ϕi) around the point ϕo
i = [νo

i1 ν
o
i2 . . .

νo
il ω

o
i1 ω

o
i2 . . . ω

o
il]

T is simply

τi = hi(ϕi) ≈ ai0 +
l∑

k=1

αikνik +
m∑

k=1

λikωik, (5.32)

where

ai0 = hi(ϕ
o
i ) −

l∑

k=1

νo
ik

∂hi

∂νik

∣∣∣∣
ϕ

′

i=ϕ
o
i

−
m∑

k=1

ωo
ik

∂hi

∂ωik

∣∣∣∣
ϕ

′

i=ϕ
o
i

, (5.33)

and

αik =
∂hi

∂νik

∣∣∣∣
ϕ

′

i=ϕ
o
i

, λik =
∂hi

∂ωik

∣∣∣∣
ϕ

′

i=ϕ
o
i

. (5.34)
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The subscript i in the MAC operation hi(·) refers to node i’s own parameters and

configuration of the MAC protocol in use. Usually, all nodes operate under the same MAC

settings, under the same parameters. In this case, hi(·) = h(·), ∀ i ∈ V, and therefore,

αik = αk and λik = λk, ∀ i ∈ V. Consequently, Eq. (5.32) simplifies to

τi = hi(ϕi) ≈ α0 +
l∑

k=1

αkνik +
m∑

k=1

λkωik, (5.35)

which we will assume for the rest of our work.

The results obtained for the successful handshake probability and the busy channel

probability in Eqs. (5.26) and Eq. (5.30), respectively, suggest the shape that we should expect

for the linear approximations of the feedback probabilities νik that depend on the transmission

probabilities τ in Eq. (5.9). In other words,

νik = gik(τ ) ≈ µi
k0 +

∑

j∈V
j 6=i

µi
kjτj , k = 1, 2, . . . , l, (5.36)

where, as in Eqs. (5.26) and (5.30), the coefficients µi
kj are expected to satisfy 0 ≤ µi

kj ≤ 1,

since they act as “weights” to the contribution of each τj to the overall probability νik. Hence,

substituting Eq. (5.36) back into Eq. (5.35), we have

τi = a0 +
l∑

k=1

αk


µ

i
k0 +

∑

j∈V
j 6=i

µi
kjτj


+

m∑

k=1

λkωik = πi +
∑

j∈V
j 6=i

φijτj +
m∑

k=1

λkωik, (5.37)

where

πi = a0 +
l∑

k=1

αkµ
i
k0, (5.38)

and

φij =
l∑

k=1

αkµ
i
kj . (5.39)
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In matrix notation, we have

τ = π + Φτ + Ωλ, (5.40)

where π = [π1 π2 . . . πn]T , Φ is the n × n matrix with elements φij , Ω is the n ×m matrix

with elements ωij , and λ = [λ1 λ2 . . . λm]T . By rearranging the terms in Eq. (5.40), we

obtain the linear system

(I − Φ)τ = π + Ωλ, (5.41)

where I is the n× n identity matrix. In its essence, the matrix Φ conveys all the information

about how each node interferes with every other node in the network based on the effect of

the PHY and MAC layers. For this reason, we refer to Φ as the interference matrix.

The linear system in Eq. (5.41) has a solution if and only if, the vector π + Ωλ is

in the column space of the matrix Γ = I−Φ, i.e., it is a linear combination of the columns of

Γ. Given the generality of the matrix Γ, which can change every time we consider a different

network topology (through the interference matrix Φ), we need to find out which matrices Γ

allow the linear system in Eq. (5.41) to have a solution. In fact, we will aim higher and ask,

ultimately, if the linear system in Eq. (5.41) has a solution regardless of network topology.

Indeed, the answer to this question is yes and is a consequence of Theorem 1 below.

Definition 1 A square matrix A is strictly diagonally dominant if the absolute value of each

diagonal element is greater than the sum of the absolute values of the non-diagonal elements

in its row. That is,

∑

j 6=i

|a(i, j)| < |a(i, i)|.

Property 1 Every strictly diagonally dominant matrix in nonsingular [62].
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Theorem 1 The matrix Γ = I − Φ is nonsingular if

∑

j 6=i

∣∣∣∣∣

l∑

k=1

−αkµ
i
kj

∣∣∣∣∣ < 1.

Proof: By construction, the diagonal elements of matrix Γ are all positive and equal

to one, whereas its off-diagonal elements φij are given by Eq. (5.39). Hence, from Defini-

tion 1, the matrix Γ is strictly diagonally dominant if and only if

∑

j 6=i

|−φij | =
∑

j 6=i

∣∣∣∣∣

l∑

k=1

−αkµ
i
kj

∣∣∣∣∣ < 1, ∀ i ∈ V. (5.42)

If the matrix Γ satisfies the condition above, it is nonsingular according to Property 1. �

Corollary 1 Given n > 1, if
l∑

k=1

| − αk| <
1

(n− 1)
,

the matrix Γ = I − Φ is nonsingular regardless of network topology and physical layer

parameters.

Proof: From Theorem 1, the matrix Γ is nonsingular if

∑

j 6=i

∣∣∣∣∣

l∑

k=1

−αkµ
i
kj

∣∣∣∣∣ < 1, ∀ i ∈ V. (5.43)

But,
∑

j 6=i

∣∣∣∣∣

l∑

k=1

−αkµ
i
kj

∣∣∣∣∣ ≤
∑

j 6=i

l∑

k=1

∣∣−αkµ
i
kj

∣∣ =
∑

j 6=i

l∑

k=1

|−αk|
∣∣µi

kj

∣∣ . (5.44)

From Eq. (5.36), the coefficients µi
kj reflect the impact of the topology and physical

layer parameters and, from our earlier remarks, they satisfy 0 ≤ µi
kj ≤ 1. Therefore,

∑

j 6=i

∣∣∣∣∣

l∑

k=1

−αkµ
i
kj

∣∣∣∣∣ ≤
∑

j 6=i

l∑

k=1

|−αk|
∣∣µi

kj

∣∣ ≤
∑

j 6=i

l∑

k=1

|−αk| = (n− 1)
l∑

k=1

|−αk| . (5.45)
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If the upper bound satisfies the condition of strictly diagonally dominance, the sum

∑
j 6=i

∣∣∣
∑l

k=1 −αkµ
i
kj

∣∣∣ will also do. Therefore, if we apply the condition of strictly diagonally

dominance with respect to the diagonal elements of Γ, we have

(n− 1)
l∑

k=1

|−αk| < 1 ⇒
l∑

k=1

|−αk| <
1

(n− 1)
, (5.46)

and we guarantee that Γ is nonsingular regardless of network topology and physical layer

parameters. �

Theorem 1 and Corollary 1 provide sufficient conditions for the matrix Γ = I −

Φ to be nonsingular. Consequently, the linear system in Eq. (5.41) can be solved, and the

transmission probability vector τ is finally given by

τ = Γ−1π + Γ−1Ωλ. (5.47)

Note 1: Considering the fact that the coefficients αk are functions of the parame-

ters of the underlying MAC protocol, and the µi
kj reflect the impact of the topology and the

physical layer parameters, the condition stated in Theorem 1 provides, in fact, a design rule

for choosing feasible PHY/MAC parameters for a given network. In other words, Theorem 1

works as a design tool for network dimensioning and optimization. To illustrate that, we give

an example of the application of Theorem 1 in the design of feasible IEEE 802.11 networks in

Chapter 6. By applying the condition stated in Theorem 1, we show that the networks become

more fair regarding the sharing of channel access among competing nodes while the average

network throughput is kept practically intact;

Note 2: Likewise, the condition stated in Corollary 1 suggests a design rule for

choosing feasible MAC parameters for a given network of size n independent of physical
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layer parameters. In other words, depending on the size of the network, Corollary 1 imposes

a condition for having a solvable system with respect to the parameters of the chosen MAC

protocol.

Note 3: It is important to mention that, although we have provided only a sufficient

condition in Theorem 1, we believe that such a condition is a necessary one in order to have

a solvable system. In Chapter 6, we investigated simulation results for IEEE 802.11 networks

and we found that, when topologies did not satisfy the sufficient condition, they would contain

some nodes obtaining zero throughput. This is a clear indication that the network is not well-

posed in terms of chosen PHY/MAC parameters. Likewise, for the same topologies, the linear

system would provide inconsistent results, like the generation of small negative probabilities!

Note 4: In the worst case scenario, the linear system in Eq. (5.41) can be computed

in up to O(n3) operations (where n is the number of nodes). Depending on the symmetry of

the problem, this complexity can be reduced toO(n) [57]. In contrast, in the work by Boorstyn

et al. [13], which aimed to obtain the scheduling rates of a CSMA network corresponding to

given desired link traffic rates, the complexity of the algorithm is exponential in general, and

it grows quadratically or cubically with the number of links for most networks on the order of

100 nodes. Therefore, our modeling framework is quite scalable with the number of nodes.

5.7 Conclusions

In this chapter, we introduced a new modeling framework for the analytical study

of any medium access control (MAC) protocols operating in multihop ad hoc networks that

focuses on the interactions between the PHY and the MAC layers. To account for the effects
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of both cross-layer interactions and the interference among all nodes, a novel linear model

was introduced with which topology and PHY/MAC-layer aspects are naturally incorporated

in what we defined as interference matrices. A key feature of the model is that nodes can

be modeled individually, i.e., it allows a per-node setup of many layer-specific parameters.

Moreover, no spatial probability distribution or special arrangement of nodes is assumed; the

model allows the computation of individual (per-node) performance metrics for any given

network topology and radio channel model.
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Chapter 6

IEEE 802.11 Ad Hoc Networks with

Omni-Directional Antennas

In this chapter, we show how the analytical modeling framework developed in Chapter 5 can

be applied to the study of realistic MAC protocols in ad hoc networks. To this end, we present

the modeling and analysis of wireless ad hoc networks that operate according to the IEEE

802.11 distributed coordination function (DCF) [64].

6.1 Modeling the IEEE 802.11 DCF MAC

In the recent past, there has been a number of attempts to model the IEEE 802.11

DCF MAC [64]. One of the most prominent works is the one by Bianchi [12], who presented a

way to evaluate the saturation throughput of fully-connected networks based on the modeling

of the binary exponential backoff algorithm, heart of the IEEE 802.11 DCF MAC. Bianchi
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modeled the backoff time counter operation as a bi-dimensional discrete-time Markov chain,

assuming that each frame “collides” with a constant and independent probability p at each

transmission attempt, regardless of the number of retransmissions already undertaken. This

probability was named the conditional collision probability, meaning the probability of a col-

lision experienced by a frame being transmitted on the channel. From the Markov chain, one

can obtain the steady-state probability τ that a node transmits a frame at any time as a func-

tion of the conditional collision probability p and some parameters of the IEEE 802.11 DCF

backoff algorithm.

Building upon Bianchi’s model, some works have tried to deal with other aspects of

the IEEE 802.11 DCF not previously considered. Ziouva and Antonakopoulos [150] provided

a general model for CSMA/CA protocols based on Bianchi’s model. They assumed a backoff

algorithm close to the one in the 802.11, and included the “freezing” activity of the 802.11

backoff algorithm, defining the probability of detecting the channel busy. Because their model

targeted general CSMA/CA protocols, their Markov chain does not accurately reflects the

IEEE 802.11 DCF operation. Ergen and Varaiya [38] followed Ziouva’s approach with respect

to the impact of the carrier sensing mechanism, and focused on the IEEE 802.11 itself. In their

model, however, they make the very simplifying assumption that the conditional collision

probability is equal to the probability of detecting the channel busy. In practice, the model

by Ziouva and Antonakopoulos [150] makes this same simplifying assumption, particularly

when the number of nodes in the network is large.

One drawback of these models (including Bianchi’s) is the fact that they do not

consider the finite retry limits of the IEEE 802.11 DCF, which proposes that DATA and RTS
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frames must be retransmitted a finite number of times. Instead, they all assume that frames

are retransmitted infinitely in time, until they are successfully transmitted. Wu et. al. [138]

incorporated the finite retry limit into Bianchi’s model. On the other hand, Wu’s model did

not attempt to model the impact of the carrier sense mechanism.

A major limitation of all the aforementioned models is the fact that they implicitly

assume a fully-connected segment of network under perfect channel conditions (i.e., no hid-

den terminal problems, no PHY-layer aspects, etc.). Consequently, by defining a “collision

probability,” they assume that all frames received at the same time “collide” and, therefore,

they are all lost. By doing so, they assume that all “collisions” are restricted to RTS frames

only, disregarding thus, the possibility of errors in the CTS, DATA and/or ACK frames. In

fact, by its very definition, all the previous models mistakenly define p, which should actu-

ally be referred as the probability of a failed handshake, since a sender’s frame could still

be correctly received at the receiver’s side, but not its acknowledgment. In addition, it is not

true, for instance, that the probability of a failed handshake is the same (or similar) to the

probability of detecting the channel busy. Each of these probabilities reflect totally different

phenomena at the PHY layer. Detecting that a channel is busy only requires that some en-

ergy level be perceived at a node (as a result of some transmission(s)). On the other hand,

transmission errors are related to a more complex process, and deals with the ability of the

nodes to correctly receive a frame, which depends on many PHY-layer parameters such as the

modulation/demodulation scheme, receiver design, etc.

If errors in both control and data frames are to be considered, then the modeling

of the IEEE 802.11 backoff operation needs to be modified. This is because all previous
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work has disregarded the two retry counters defined by the standard [64]: the STA long retry

counter (SLRC) and the STA short retry counter (SSRC). The SSRC is associated with the RTS

frame, and the SLRC is associated with the DATA frame1. The SSRC (SLRC) is incremented

whenever an RTS (DATA) frame is unsuccessfully transmitted. The SSRC (SLRC) is reset to

0 whenever a CTS (ACK) frame is received in response to an RTS (DATA) frame. Therefore,

even though the SRRC may be reset after a successful RTS transmission, the subsequent

DATA frame transmission may be unsuccessful, leading, instead, to an increment of the SLRC.

According to the standard, the contention window size is reset to its minimum value

only after a successful DATA frame transmission occur or when the SLRC or SSRC reach

their maximum values—but never after a successful RTS transmission. In previous models,

the CTS, DATA, and ACK frames were all assumed to be error-free after a successful RTS

transmission, implying that a reset of SRRC would necessarily lead to a reset of the con-

tention window size (since the SLRC would never be incremented). Therefore, in previous

works, the contention window size was solely controlled by the number of unsuccessful RTS

transmissions.

For a faithful modeling of the IEEE 802.11 DCF MAC, one needs to consider both

SSRC and SLRC retry counters. Unfortunately, if we choose to follow the modeling ap-

proach used by Bianchi, it is not hard to realize that we will need a four-dimensional Markov

chain to cover all possible states of the binary exponential backoff algorithm. To make things

simpler—while still considering the impact of errors in both control and data frames—we con-

sider a small simplification of the original IEEE 802.11 DCF MAC by defining a single retry
1If this frame is bigger than a certain user-defined threshold.
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counter RC. The RC will be incremented every time an RTS or DATA frame is unsuccessfully

transmitted, i.e., when the CTS/ACK are not received within a timeout or when they are re-

ceived with errors. Likewise, the RC and the contention window size will be reset only when

either a DATA frame is successfully transmitted or when RC reaches its maximum value. As

in the standard, we allow the contention window to increment up to a maximum value, after

which it remains at this value until it is reset. With this small simplification, we are able to

model the IEEE 802.11 DCF MAC using only a two-dimensional Markov chain, as described

next.

Let bj(t) be the stochastic process representing the backoff time counter for a node

j ∈ V at a time t, and sj(t) be the stochastic process representing j’s backoff stage at time

t, where sj(t) ∈ [0,M ], and M is the maximum backoff stage (i.e., the maximum value the

retry counter RC can assume). Hence, bj(t) ∈ [0,Wsj(t) − 1], where

Wsj(t) =





2sj(t)Wmin if 0 ≤ sj(t) < m

2mWmin if m ≤ sj(t) ≤M.

(6.1)

Let us assume that the RTS/CTS handshake fails with a constant and independent

probability pj , and that the DATA/ACK handshake fails with a constant and independent prob-

ability dj , both regardless of the number of retransmissions experienced. Also, let us assume

that a node detects that the channel is busy with a constant and independent probability gj .

Note that these independence assumptions are with respect to the number of retransmissions,

but pj , dj , and gj are dependent on PHY-layer aspects, and are computed according to the de-

velopments in Section ??. Under these conditions, the process {sj(t), bj(t)} can be modeled

with the discrete-time Markov chain depicted in Fig. 6.1. As in [12], let us adopt the notation
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Figure 6.1: Markov model for the modified binary exponential backoff algorithm based on the IEEE
802.11 DCF MAC. Losses in both control and data frames taken into account.

P{i1, k1|i0, k0} = P{s(t + 1) = i1, b(t + 1) = k1|s(t) = i0, b(t) = k0}. From the above

Markov chain, the only non-null one-step transition probabilities are

P{i, k|i, k + 1} = 1 − gj , k ∈ [0,Wi − 2], i ∈ [0,M ] (6.2)

P{i, k|i, k} = gj , k ∈ [1,Wi − 1], i ∈ [0,M ] (6.3)

P{i,−1|i, 0} = 1 − pj , i ∈ [0,M ] (6.4)

P{i, k|i− 1, 0} =
pj

Wi
, k ∈ [0,Wi − 1], i ∈ [1,M ] (6.5)

P{i, k|i− 1,−1} =
dj

Wi
, k ∈ [0,Wi − 1], i ∈ [1,M ] (6.6)

P{0, k|i,−1} =
(1 − dj)

W0
, k ∈ [0,W0 − 1], i ∈ [0,M − 1] (6.7)
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P{0, k|M, 0} =
pj

W0
, k ∈ [0,W0 − 1] (6.8)

P{0, k|M,−1} =
1

W0
, k ∈ [0,W0 − 1]. (6.9)

The first and second equations indicate that the backoff counter is decremented if the

channel is sensed idle (with probability 1− gj), and frozen if the channel is sensed busy (with

probability gj). The third equation indicates that a successful handshake of control frames

took place and the node is ready to send its DATA frame. The next equation indicates that,

after an unsuccessful handshake of control frames (RTS/CTS) at stage i−1, a backoff interval

is uniformly chosen within the interval [0,Wi − 1] for the next stage i. The fourth equation

indicates that the transmission of DATA frame failed at stage i − 1, and a backoff interval

is uniformly chosen within the interval [0,Wi − 1]. The fifth equation indicates that a DATA

frame was transmitted successfully and a new frame transmission starts at backoff stage 0 with

a backoff window uniformly chosen within the interval [0,W0−1]. The next equation indicates

that a handshake of control packets failed and the number of allowed retransmissions reached

its maximum. Hence, the DATA frame is discarded and a new one is picked at the head of

the node’s queue. A new frame transmission starts at backoff stage 0 with a backoff window

uniformly chosen within the interval [0,W0 − 1]. The last equation describes that either a

DATA frame transmission was successful or it it failed. In either case, a new frame starts at

backoff stage 0 with a backoff window uniformly chosen within the interval [0,W0 − 1].

Let bi,k = limt→∞ P{s(t) = i, b(t) = k}, i ∈ [0,M ], k ∈ [0,Wi − 1] be the

stationary distribution of the Markov chain. First, we note that

bi,0 = pj bi−1,0 + dj bi−1,−1, 1 ≤ i ≤M. (6.10)
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But, because bi−1,−1 = (1 − pj)bi−1,0, we have

bi,0 = [pj + dj(1 − pj)] bi−1,0, (6.11)

which leads to

bi,0 = [pj + dj(1 − pj)]
i b0,0, 0 ≤ i ≤M. (6.12)

For i = 0 and k ∈ [1,W0 − 1],

b0,k =
W0 − k

(1 − gj)W0

M−1∑

l=0

(1 − pj)(1 − dj)bl,0 + bM,0, (6.13)

whereas for i 6= 0 and k ∈ [1,Wi − 1],

bi,k =
Wi − k

(1 − gj)Wi
[pj + dj(1 − pj)] bi−1,0, i ∈ [1,M ]. (6.14)

From Eq. (6.11), and by noting that b0,0 =
∑M−1

l=0 (1 − pj)(1 − dj)bl,0 + bM,0, Eqs. (6.13)

and (6.14) can be rewritten as

bi,k =
Wi − k

(1 − gj)Wi
[pj + dj(1 − pj)]

i b0,0, (6.15)

for i ∈ [0,M ] and k ∈ [1,Wi − 1]. Therefore, all values of bi,k can be expressed as functions

of b0,0, whose value can be found from the normalization condition
∑M

i=0

∑Wi−1
k=0 bi,k = 1,

yielding

b0,0 =
2(1 − gj)(1 − aj)(1 − 2aj)

(1 − aM+1
j )(1 − 2aj)(1 − 2gj) + κW

, (6.16)

where aj = pj + dj(1 − pj), and κ = (1 − aj)
[
1 − (2aj)

M+1
]

if m = M, and κ =

1 − aj{1 + (2aj)
m[1 + aM−m

j (1 − 2aj)]} if m < M.

A node initiates a handshake when it attempts to send an RTS, i.e., when it reaches

the states bi,0, i ∈ [0,M ]. Therefore, the probability τj that node j attempts to initiate a
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handshake is obtained by taking τj =
∑M

i=0 bi,0, which is given by

τj =
2(1 − gj)(1 − aM+1

j )(1 − 2aj)

(1 − aM+1
j )(1 − 2aj)(1 − 2gj) + κW

, (6.17)

with κ assuming the same values as before depending on whether m ≤ M. It is interesting

to note that, if M → ∞, then gj = 0, dj = 0, and the Markov chain in Fig. 6.1 reduces to

the one used by Bianchi [12] for the case when m < M . Accordingly, by making M → ∞,

we have gj = 0 and dj = 0 in Eq. (6.17), and the same expression as the one derived by

Bianchi [12] is obtained.

6.2 Building the Interference Matrix

In this section, we show how to obtain the interference matrix of an ad hoc network

that operates according to the IEEE 802.11 DCF MAC. To accomplish that, we follow the

developments introduced in Chapter 5 and derive linear approximations to the operation of

the IEEE 802.11 DCF MAC and to the impact of the feedback information it uses. After that,

we investigate the conditions for the linear system to be solvable, according to Theorem 1 and

Corollary 1 in Chapter 5. Finally, we investigate the relationship between system solvability

and issues pertinent to network dimensioning and fairness of the IEEE 802.11 DCF MAC.

6.2.1 The Linear Approximation

Equation (6.17) contains exactly what we need to apply the analytical modeling

framework introduced in Chapter 5: it provides the functional form τj = hj(ϕj) by which

the IEEE 802.11 DCF MAC relates the steady-state transmission probability (scheduling rate)
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τj with a vector of feedback probabilities ϕj . In the specific case of the Markov model we

developed for the IEEE 802.11 DCF MAC, the feedback variables are pj , qj , and gj . But,

because pj and qj denote probabilities of unsuccessful handshakes, we define the correspond-

ing probabilities of successful handshakes qrts
j = 1 − pj , and qdat

j = 1 − dj , in order to be

coherent with the framework developed in Chapter 5. Hence, the vector ϕj of feedback prob-

abilities will be given by ϕj = [qrts
j qdat

j gj ]
T . Following the steps presented in Section 5.6, a

first-order approximation of τj can be easily obtained, and it is given by

τj =
2(1 −W )

(W + 1)2
+

2W

(W + 1)2
qrts
j +

2W

(W + 1)2
qdat
j − 2(W − 1)

(W + 1)2
gj , (6.18)

with linear coefficients α0 = 2(1 −W )/(W + 1)2, α1 = α2 = 2W/(W + 1)2, and α3 =

2(W − 1)/(W + 1)2, according to the notation used in Eq. (5.35) in Chapter 5.

The computation of the feedback probabilities qrts
j , qdat

j , and gj follow the develop-

ments in Sections 5.6.1 and 5.6.2, and their linear approximations are functions of the trans-

mission probabilities of all nodes in the network, as given by Eqs. (5.26), (5.30), i.e.,

τj = α0 + α1

(
πrts

j −
∑

k∈V

crts
jk τk

)
+ α2

(
πdat

j −
∑

k∈V

cdat
jk τk

)
− α3

∑

k∈V

djkτk,

= πj +
∑

j∈V
j 6=i

φjkτk, (6.19)

where

πj = α0 + α1π
rts
j + α2π

dat
j , ∀ j ∈ V, (6.20)

and

φjk =





−α1c
rts
jk − α2c

dat
jk − α3djk, if j 6= k

0, otherwise.
(6.21)
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Therefore, we have obtained a linear system of equations relating the transmission

probabilities of all nodes in the network, which is given by (in matrix notation)

(I − Φ) τ = π, (6.22)

where π = [π1 π2 . . . πn]T , and Φ is the interference matrix whose elements are given by

Eq. (6.21). As a final note, we observe that because the Markov model developed for the

IEEE 802.11 DCF MAC does not contain any a priori feedback variables, Eq. (6.22) is, in

fact, a simplified version of the more general case introduced in the modeling framework in

Chapter 5, as expressed by Eq. (5.41).

6.2.2 Making the Linear System Solvable

In Chapter 5, we provided sufficient conditions for the linear system of transmission

probabilities to have a solution. According to Theorem 1, the linear system of Eq. (6.22) has

a solution if all of its rows satisfy

∑

j 6=k

∣∣∣α1c
rts
jk + α2c

dat
jk + α3djk

∣∣∣ < 1, ∀ j ∈ V. (6.23)

Thus, depending on the location of nodes, the parameters of the MAC layer (rep-

resented by the coefficients αi, i = 1, 2, 3), and/or the parameters of the PHY layer (which

have their impact expressed through the coefficients crts
ik , cdat

ik , and dik), the linear system of

Eq. (6.22) has a solution. Consequently, given the location of the nodes and the characteriza-

tion of the radio channel, one can choose appropriate PHY/MAC layer parameters to satisfy

the above condition in order to have a solvable linear system.

On the other hand, if one wants to obtain a solvable system regardless of physical
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layer parameters, Corollary 1 in Chapter 5 provides the answer. In this case, a sufficient

condition for the linear system of Eq. (6.22) to have a solution is simply given by

3∑

i=1

|αi| <
1

n− 1
, (6.24)

which, from the definition of the coefficients αi, reduces to

6Wmin − 2

(Wmin + 1)2
<

1

n− 1
, (6.25)

i.e., given the number n of nodes in the network, the minimum contention window size Wmin

of the IEEE 802.11 DCF MAC must be chosen in such a way that the inequality in Eq. (6.25)

is satisfied. Likewise, if we rearrange the terms in Eq. (6.25), we obtain an upper bound on

the maximum number n of nodes allowed in the network for a given minimum contention

window size Wmin, i.e.,

n <
(Wmin + 1)2

6Wmin − 2
+ 1. (6.26)

Therefore, Eq. (6.26) provides an upper bound on the maximum number of nodes

allowed in the network so that a solution to the linear system is possible regardless of physical

layer aspects. Figure 6.2 shows the maximum number of nodes allowed in the network as a

function of the minimum contention window size Wmin, as provided by Eq. (6.26). As we

can see, the maximum number of nodes allowed in the network increases linearly with the

minimum contention window size Wmin. To understand this linear increase, we can make an

approximation to the upper bound of Eq. (6.26) when Wmin � 1. In this case,

(Wmin + 1)2

6Wmin − 2
+ 1 ≈ W 2

min

6Wmin
=

1

6
Wmin, (6.27)

132



0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

200

400

600

800

1000

1200

1400

Minimum Contention Window Size

M
ax

im
um

 N
um

be
r 

of
 N

od
es

 A
llo

w
ed

Figure 6.2: Maximum number of nodes allowed in the network versus the minimum contention win-
dow size.

which is exactly the relation we obtain if we adjust a linear function of the form y = ax to the

curve in Fig. 6.2. Likewise, because the minimum contention window size Wmin of the IEEE

802.11 DCF MAC is specified as a power m of the base 2, i.e., Wmin = 2m, the maximum

number of nodes allowed in the network increases exponentially with the power m of the base

2 according to 1
6 × 2m, as shown in Figure 6.3. Consequently, from Eq. (6.27), the following

practical rule of thumb can be postulated about the maximum number of nodes allowed in a

saturated IEEE 802.11 network so that we have a solvable linear system regardless of physical

layer aspects:

Rule of Thumb (Maximum Number of Nodes):In order to have a solvable linear

system that corresponds to a saturated IEEE 802.11 network independent of physical layer

aspects, the maximum number of nodes allowed in the network must be around a sixth of the

minimum contention window size.
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Figure 6.3: Maximum number of nodes allowed in the network versus the minimum contention win-
dow size expressed in terms of powers of the base 2.

It is interesting to observe that our rule of thumb is actually related to aspects of

network performance and dimensioning. For instance, if we look at the results obtained in

Chapter 2 about the average service time and jitter with respect to the minimum contention

window size, we will see that a higher minimum contention window size is necessary as the

number of nodes increases, as shown in Figures 2.7(a), (b), (c), (d), (e), (f), (g), and (h). For

example, the rule of thumb says that the value of Wmin necessary for a network with 50 nodes

must be 50 × 6 = 300. Surprisingly, we can observe in Figure 2.7(e) that the average service

time for a network of 50 nodes only attains reasonable values after the minimum contention

window size increases above 256.

When physical layer aspects are in place, the rule of thumb does not apply. How-

ever, the relation between the sufficient condition of Theorem 1 and network dimension-

ing/performance can still be observed, as discussed next.
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6.2.3 Network Fairness and the Sufficiency Conditions

An important aspect related to the sufficiency conditions provided by Theorem 1

and Corollary 1 is regarding network fairness, i.e., the fair share of channel access among

competing nodes, leading to overall throughput values much higher across all nodes. The

IEEE 802.11 DCF MAC, in particular, is well-known for presenting serious fairness prob-

lems []. The fairness problem of the IEEE 802.11 DCF MAC is directly related to its binary

exponential backoff algorithm and, consequently, to the selection of the minimum contention

window size as well.

Interestingly, to make the linear system to become“solvable” seems to be directly

related to make the system more fair as well (in the particular case of the IEEE 802.11 DCF

MAC). To investigate this, we applied the sufficiency condition of Theorem 1 on 10 random

topologies with 100 nodes each, using fixed PHY-layer parameters and a given radio channel

model (described in more detail in Section 7.5). By varying only the minimum contention

window size, we found that the system becomes solvable for the 10 selected topologies if

Wmin = 256, as opposed to the default value of Wmin = 32. Given that, we computed

the fairness of the 10 topologies for the two values of Wmin using throughput results derived

from discrete-event simulations using Qualnet [105]. To compute the level of fairness, we use

Jain’s fairness index [68], which is defined as

Fairness Index =
1

n

(
∑n

i=1 Si)
2

∑n
i=1 S

2
i

, (6.28)

where Si is the throughput of each node in the network, and n is the number of nodes. Regard-

ing the fairness index, the smaller the value is, the more fair the network becomes. Figure 6.4
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shows the fairness index calculated for the 10 topologies using the two sizes of minimum

contention window: Wmin = 32 and Wmin = 256. As we can see, the topologies with
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Figure 6.4: Fairness index of 10 topologies with 100 nodes each. Results correspond to discrete-event
simulations of the IEEE 802.11 DCF MAC operating with minimum contention window sizes equal to
Wmin = 32 and Wmin = 256.

Wmin = 256 are more “fair” compared to the ones with Wmin = 32. Furthermore, if we

look at the average network throughput in Figure 6.5, we will see that for an overall decay in

average throughput of only 8.8% for networks withWmin = 256, we have an average increase

in throughput fairness of 35% for the same networks, as observed in Figure 6.4. Lastly, it is

interesting to observe the effect that fairness has on network throughput. In Figure 6.6, we

show the minimum throughput value observed in each of the 10 topologies (of a given node in

the network). As we can see, the minimum throughput value is much higher in the topologies

with Wmin = 256, showing how much fair the networks become.

Given the above considerations, we can observe that by making the linear system

solvable, we are actually also dealing with the feasibility of the network scenarios we want to
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Figure 6.5: Average throughput for 10 topologies with 100 nodes each. Results correspond to discrete-
event simulations of the IEEE 802.11 DCF MAC operating with minimum contention window sizes of
Wmin = 32 and Wmin = 256.
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Figure 6.6: Minimum throughput observed in each of the 10 topologies with 100 nodes. Results corre-
spond to discrete-event simulations of the IEEE 802.11 DCF MAC operating with minimum contention
window sizes equal Wmin = 32 and Wmin = 256.
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study. Therefore, the sufficiency conditions provided by Theorem 1 and Corollary 1 serve, in

fact, as powerful tools for network dimensioning and design.

6.3 Performance Metrics

The scheduling rate τi of every node i ∈ V constitutes the fundamental piece of

information that we need to obtain the performance metrics of interest. In fact, many network

performance metrics such as throughput and average service time depend, ultimately, on how

frequent the nodes schedule their transmissions, how successful they are, and their impact on

the transmission rate of every other node in the network—all intrinsically dependent on the

underlying physical layer aspects and network topology. Therefore, it becomes apparent that a

bottom-up modeling approach is needed in order to derive the performance metrics of interest.

In Chapter 2, we introduced a bottom-up modeling approach to compute the first

two moments of the service time of the IEEE 802.11 DCF MAC. This model was used in

Chapter 3 and further extended in Chapter 4. In all previous chapters, however, we used the

simple Markov model proposed by Bianchi [12] to model the operation of the IEEE 802.11

DCF MAC. In Section 6.1, we introduced a more realistic Markov model for the operation of

the IEEE 802.11 DCF MAC that considers the impact of physical layer aspects and the carrier

sense activity of nodes.

Using the core of the developments and results introduced in Chapters 2 and 4, we

can derive the performance metrics relative to the new Markov model for the IEEE 802.11

DCF MAC introduced in Section 6.1. This time, however, we treat nodes individually, and

performance metrics are developed in a way that the impact of the physical layer and network
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radio-based topology are taken into account on the performance of every node in the network.

In the sequel, we start with the derivation of the channel state probabilities as per-

ceived individually by each node in the network. Following that, we proceed with the deriva-

tion of the main performance metrics of interest.

6.3.1 Channel State Probabilities

In Chapter 2, we derived closed-form expressions for the first two moments of a

node’s service time in saturated IEEE 802.11 DCF networks under perfect channel conditions

(i.e., no physical layer aspects and no hidden terminals). To obtain the model, we identified

three mutually exclusive events that dominate the behavior of the binary exponential backoff

algorithm of the IEEE 802.11 DCF MAC. These events correspond to the possible channel

states a node can sense when it is contending for channel access. Therefore, the first two

moments of a node’s service time are functions of the channel state as perceived by each

node, and this channel state is conveyed in the form of channel state probabilities.

From the standpoint of a node that is in backoff mode, the channel can be sensed

as idle or busy. If the channel is sensed busy, we argue in Chapter 2 that it is because

either a successful frame transmission occurs over the channel or a “frame collision” hap-

pens. Based on these observations, the three mutually exclusive events defined earlier were

Es = {successful transmission}, Ei = {idle channel}, and Ec = {collision}. But, if

physical layer aspects are to be taken into account, we need to consider a more realistic

event than the simpler “collision” event defined previously. As it was pointed out in Sec-

tion 6.1, instead of dealing with the event “collision,” we need to consider the more gen-
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eral event “unsuccessful handshake,” and its opposite event, i.e., the “successful handshake,”

in order to be more faithful to the real operation of the IEEE 802.11 DCF MAC. Conse-

quently, the three mutually exclusive events are now defined as E idle
i = {idle channel},

Esuc
i = {successful handshake}, and Euns

i = {unsuccessful handshake}, with probabilities

pidle
i = P{Eidle

i }, psuc
i = P{Esuc

i }, and puns
i = P{Euns

i }, respectively.

Because of the impact of topology and physical layer aspects, nodes no longer expe-

rience the same channel conditions, as it was assumed in Chapter 2. For this reason, from now

on, we use the subscript i to refer to each node i ∈ V . Given that, we can now proceed with the

computation of the channel state probabilities pidle
i , psuc

i , and puns
i . From Section 5.6.2, the

probability that a node in backoff mode senses that the channel is busy is given by Eq. (5.30).

Consequently, the probability pidle
i that a node i ∈ V in backoff mode senses that the channel

is idle is simply

pidle
i = 1 − gi = 1 −

∑

k∈V

dikτk, (6.29)

where dr
ik is defined as in Eq. (5.29).

For the probability psuc
i that a node i ∈ V in backoff mode perceives that a suc-

cessful handshake occurs over the channel, we need to consider the event that at least one

node transmits over the channel and it has a successful handshake that is perceived by node

i. Therefore, we need to consider all possible combinations of active nodes in V that satisfy

such constraint. If we denote by {csuc
ik }k=1,...,l the set of all l ≤ 2n−1 such combinations, and

Csuc
i a random variable that indicates the occurrence of each of these combinations, we have

psuc
i = P

{
l⋃

k=1

{Csuc
i = csuc

i }
}
. (6.30)
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Based on considerations C1, C2, and C3 from Section 5.6 about the nodes’ transmis-

sion probabilities (which are related to the nodes’ attempts to establish a handshake), we can

obtain an approximation by taking only the combinations csuc
ik where only node k transmits

and it is successful

psuc
i ≈

∑

k∈Si

P{k transmits ∩ k has successful handshake}

=
∑

k∈Si

P{k has successful handshake | k transmits}P{k transmits}

=
∑

k∈Si

qkτk, (6.31)

where Si ⊆ V is the set of nodes within the carrier sense range of node i (the signal has to be

perceived by node i), and qk is the probability that node k ∈ V executes a successful hand-

shake given that it has attempted one. From the Marvov model in Section 6.1, this probability

is simply

qk = qrts
k qdat

k = (1 − pk)(1 − dk), ∀ k ∈ V. (6.32)

Following similar arguments, the probability puns
i that node i perceives an unsuc-

cessful handshake occurring in the channel can be approximated by

puns
i ≈

∑

k∈Si

(1 − qk)τk. (6.33)

6.3.2 Average Backoff Time

Given the computation of the channel state probabilities, we can now find the aver-

age backoff time experienced at each node i ∈ V based on the results obtained in Chapter 2

and Chapter 4, where the finite-retry limit mechanism of the IEEE 802.11 DCF MAC was
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incorporated into the model. As a consequence of the fact that nodes are now treated individu-

ally, the many parameters that form the average backoff time need to be computed with respect

to each node’s own perception of the channel under the underlying radio-based topology and

physical layer aspects. Therefore, if we use the subscript i to indicate the parameters of the

backoff time corresponding to node i ∈ V, the average backoff time T Bi
experienced at each

node i ∈ V will be given by (from the results in Chapter 2 and Chapter 4),

TBi
=
αi(Wminβ1i − β2i)

2
+ β3i t

res
i , ∀ i ∈ V, (6.34)

where αi is the average backoff “step size”, Wmin is the minimum contention window size,

β1i, β2i, and β3i are given in Eqs. (4.3)–(4.8), and tres
i is the average time spent in collision

resolution.

Regarding the parameters β1i, β2i, and β3i, they still follow Eqs. (4.3)–(4.8), except

for the fact that they are now functions of the individual successful handshake probabilities

qi, ∀ i ∈ V, given in Eq. (6.32). Because of physical layer aspects and network topology, the

parameters αi and tres
i need to be defined accordingly. First, let us consider the parameter αi.

From Eq. (2.5), the parameter αi depends on the channel state probabilities and the average

time duration of each state. Using the channel state probabilities derived in Eqs. (6.29), (6.31),

and (6.33), and denoting the average time duration of each state by σ, tsuc
i , and tuns

i , the

expression for the average step size αi is now given by

αi = σpidle
i + tuns

i puns
i + tsuc

i psuc
i , ∀ i ∈ V. (6.35)

As before, the value of the slot size σ is fixed and defined by the IEEE 802.11 stan-

dard [64], and it will depend on the physical layer of choice (direct sequence spread spectrum

142



(DSSS) or frequency-hoping spread spectrum (FHSS)). For the case of the average time tuns
i

the channel is perceived busy due to an unsuccessful handshake, we need to look at the reasons

why the handshake may fail. A handshake will fail if any of the four events happen:

1. The RTS is not successfully received at the intended receiver;

2. The RTS is successfully received, but the CTS is not;

3. Both RTS and CTS are received successfully, but the DATA frame is not;

4. The RTS, CTS, and DATA frames are received successfully, but the ACK is not.

Each of the four events listed above lead to different durations of the time intervals

in which the channel can be perceived busy from the standpoint of a node in carrier sense

mode. For example, in the first case, if a transmitted RTS is not successfully received by its

intended receiver, none of the subsequent frames following the RTS in the four-way handshake

mechanism will be sent over the channel. Consequently, the time the channel is perceived busy

by other nodes will be shorter than the time the channel is perceived busy when, for example,

an RTS, CTS, and DATA frames are sent successfully over the channel (Case 4). In each case,

the time duration depends on which frames were transmitted over the channel, the incurred

propagation delays, and the extra time intervals specified by the standard, like the IFS and

DIFS time intervals mentioned in Chapter 2.

When physical layer aspects are taken into account, we need to consider another

time interval specified by the standard: the extended interframe space (EIFS) [64]. The EIFS

should be used whenever the PHY indicates to the MAC that a frame transmission was begun

that did not result in the correct reception of a complete MAC frame with a correct FCS value.
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The EIFS interval should begin following indication by the PHY that the medium is idle after

detection of the erroneous frame, without regard to the virtual carrier-sense mechanism. The

EIFS is defined to provide enough time for another node to acknowledge what was, to this

node, an incorrectly received frame before this node commences transmission. The duration

of an EIFS is defined as

EIFS = SIFS + ACK + PreambleLength + PLCPHeaderLength + DIFS, (6.36)

where the term (ACK + PreambleLength + PLCPHeaderLength) is expressed in microseconds

required to transmit at the PHY’s lowest mandatory rate. In other words, during backoff, if

the node cannot successfully detect the MAC frame being transmitted over the channel, and,

as a result, it is unable to set up its network allocation vector (NAV) appropriately (or respond

to the MAC frame in case it is the target receiver), then, once the channel is detected to be idle

again, the node does not wait for a DIFS interval before resuming its backoff time counter.

Instead, it will wait for an EIFS time interval.

Ideally, we should distinguish in our analytical model the cases when a node in

carrier sense mode correctly detects a MAC frame from the cases when it does not. But,

considering that (a) the probability puns
i of detecting an unsuccessful transmission over the

channel is an approximation to a probability that encompasses many other possible events

(Eq. (6.33)); and that (b) frame errors will happen due to channel impairments and multiple

access interference, then, we will assume that the likelihood with which nodes will be able

to correctly detect the MAC frames being transmitted over the channel (while in carrier sense

mode) will be low. Consequently, in the long run, nodes will mostly need to apply the EIFS

interval as soon as the channel is detected idle and before resuming their backoff time counter.
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Given this assumption, if we let t̃rts, t̃cts, t̃dat, and t̃ack denote the time durations corresponding

to the four events listed above, we will have that

t̃rts = RTS + δ + EIFS (6.37)

t̃cts = RTS + δ + SIFS + CTS + δ + EIFS, (6.38)

t̃dat = RTS + δ + SIFS + CTS + δ + SIFS + DATA + δ + EIFS (6.39)

t̃ack = RTS + δ + SIFS + CTS + δ + SIFS + DATA + δ + SIFS + ACK + δ + EIFS.

(6.40)

Now, if q̃rts
k , q̃

cts
k , q̃data

k , and q̃ack
k denote the probabilities that each node k ∈ Si has an

unsuccessful handshake due to any of the four events listed above, and q̃ rts
Si
, q̃cts

Si
, q̃data

Si
, and q̃ack

Si

denote the probabilities that node i ∈ V perceives each of these four events happening over

the channel, then, over all nodes k ∈ Si, we have

q̃rts
Si

=
∑

k∈Si

q̃rts
k τk, (6.41)

q̃cts
Si

=
∑

k∈Si

q̃cts
k τk, (6.42)

q̃data
Si

=
∑

k∈Si

q̃data
k τk, (6.43)

q̃ack
Si

=
∑

k∈Si

q̃ack
k τk, (6.44)

where the computation of the individual probabilities q̃rts
k , q̃

cts
k , q̃data

k , and q̃ack
k should follow

the same developments as for the computation of the successful handshake probability qk in

Section 5.6. Hence, the average time tuns
i the channel is perceived busy by a node i ∈ V due

to an unsuccessful handshake over the channel (in Eq. (6.35)) is finally given by

tuns
i = t̃rtsq̃rts

Si
+ t̃ctsq̃cts

Si
+ t̃dataq̃data

Si
+ t̃ackq̃data

Si
. (6.45)
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Finally, for the average time tsuc
i the channel is perceived busy due to a successful

handshake, we have

tsuc
i = RTS + SIFS + δ + CTS + SIFS + δ + H + E{P} + SIFS + δ+

+ ACK + δ + EIFS, (6.46)

where H and E{P} are the time to transmit the data frame header and an average payload

size, respectively. Notice that tsuc
i is equal to t̃ack in Eq. (6.40) because, although the ACK

may not be received correctly, the time the channel is busy is basically the same.

To finish the computation of the backoff time in Eq. (6.34), we need to compute the

average time tres
i a node i ∈ V spends in collision resolution, as indicated in Eq. (6.34). In

the standard, this means that a CTS is not received within a CTS Timeout interval or an ACK

is not received back within an ACK Timeout interval. The length of these intervals, however,

are not specified by the standard. Usually, such intervals are assumed to be equal to the time

it lasts to receive the CTS (ACK) back after an RTS (DATA) is transmitted. Because the CTS

and ACK frames have the same length in bytes, and they are transmitted with the same basic

data rate, we define2

CTS Timeout = ACK Timeout = SIFS + ACK + 2δ. (6.47)

Finally, from the model in Section 6.1, the time spent in collision resolution depends

on whether the failed handshake happened within a CTS timeout or an ACK timeout. In the

case the handshake failed within a CTS timeout, the time spent on collision resolution is going

to be equal to the CTS Timeout value. Otherwise, it means that an RTS/CTS handshake was
2Simulators such as Qualnet and NS-2 use these same values.
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successful, but the subsequent DATA/ACK handshake not. Therefore, by the time the node

realizes that the DATA/ACK portion of the handshake failed, it has already spent the time on

the first RTS/CTS handshake completion. Therefore, we time spent on collision resolution is

conditioned on the reason for the failed handshake. In other words, by defining tres
i |rts/cts

as the time spent on collision resolution given that the handshake failed during the RTS/CTS

portion of the handshake, and tres
i |dat/ack as the time spent on collision resolution given that

the handshake failed during the DATA/ACK portion of the handshake, we have

tres
i |rts/cts = RTS + CTS Timeout (6.48)

tres
i |dat/ack = RTS + δ + SIFS + CTS + δ + SIFS + H + E{P} + ACK Timeout. (6.49)

From Section 6.1, the probability that a failed RTS/CTS handshake occurs at the

end of a backoff stage is given by pi, ∀i ∈ V, whereas the probability that a failed DATA/ACK

handshake fails is given by di, ∀i ∈ V. Hence, the average time tres
i a node i ∈ V spends in

collision resolution is given by

tres
i = pit

res
i |rts/cts + (1 − pi)dit

res
i |dat/ack, ∀i ∈ V, (6.50)

and the average backoff time in Eq. (6.34) can be finally computed for every node i ∈ V.

6.3.3 Average Service Time

Given the characterization of the average backoff time TBi
of each node i ∈ V,

we can proceed with the computation of the average time T ser
i it takes for a node to serve

data frames. By “average time to serve data frames” we refer to the average time interval

that initiates at the moment a data frame is taken from the head of the output queue to the
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moment the node decides that either the frame has been successfully transmitted or needs to

be dropped after exceeding the maximum number of retransmissions (according to the IEEE

802.11 DCF MAC). Notice that, in Chapter 2, nodes were allowed to backoff infinitely in

time. Consequently, data frames were assumed to be always transmitted successfully and,

consequently, never dropped. Later, in Chapter 4, we introduced the finite-retry limit on the

number of retransmissions into the analytical model. But, because of the assumption of perfect

channel conditions, we restricted the impact of the finite-retry limit to the computation of the

average backoff time only. Nevertheless, if physical layer aspects and network topology are

taken into account, the computation of the average service time needs to be addressed more

carefully.

Because each data frame is going to be either successfully transmitted or dropped,

a key information to the computation of the average service time is the probability pdrop
i

that a data frame is dropped (discarded). To compute this probability, we first note that the

probability qi that a node i ∈ V performs a successful handshake at the end of a backoff stage

is given by Eq. (6.32). From the independence assumption adopted in Section 6.1 regarding

the probability of successful handshake among backoff stages, and considering that each data

frame is entitled to a maximum numberM of retransmissions, then, the probability that a data

frame is dropped is simply given by

pdrop
i = (1 − qrtsqdat)

M+1, ∀ i ∈ V, (6.51)

where the power of M + 1 stands for the (M + 1)-th attempt to transmit the data frame

at the end of the M -th backoff stage (the counting of backoff stages starts at zero, and we

need to count the first transmission attempt before the node starts making retransmissions (see
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Figure 6.1)).

If the data frame is dropped, it means that it has already been retransmittedM times.

Therefore, if a data frame goes through all M + 1 backoff stages, the average time T Bi
(M)

spent in backoff is given by Eq. (2.9), which we repeat here for convenience:

TBi
(M) =

M∑

k=0

T
k
Bi

+Mtres
i , (6.52)

where T k
Bi

= αi(Wk − 1)/2 is the average time spent in backoff stage k, as introduced

in Eq. (2.5), and tres
i is the average time the node i ∈ V spends in collision resolution, as

computed in Eq. (6.50) (note that backoff stages are numbered starting from zero in order to

agree with the notation adopted in the Markov model). But, because

Wk =





2kWmin if 0 ≤ k < m

2mWmin if m ≤ k ≤M,

(6.53)

we have

M∑

k=0

T
k
Bi

=
m−1∑

k=0

T
k
Bi

+
M∑

k=m

T
k
Bi

=
m−1∑

k=0

αi

(
2kWmin − 1

)

2
+

M∑

k=m

αi (2mWmin − 1)

2

=
m−1∑

k=0

αi

(
2kWmin

)

2
+

M∑

k=m

αi (2
mWmin)

2
−

M∑

k=0

αi

2

=
α

2
{Wmin [2m(M −m+ 2) − 1] −M − 1} . (6.54)

Consequently, the average time TBi
(M) spent in backoff until the end of the M -th

backoff stage is given by

TBi
(M) =

α

2
{Wmin [2m(M −m+ 2) − 1] −M − 1} +Mtres

i . (6.55)

To complete the computation of the average service time spent when a data frame

is dropped, we need to take into account the final four-way handshake attempt at the end of
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the M -th backoff stage. But, because this four-way handshake fails, the average time spent is

given by tres
i in Eq. (6.50). Hence, the average service time T drop

i spent when a data frame is

dropped is given by

T
drop
i = TBi

(M) + tres
i . (6.56)

On the other hand, if the data frame is transmitted successfully, it means that the

successful transmission happens in any of the M + 1 transmission attempts. In this case, the

average time spent in backoff is given by Eq. (6.34). But, again, the expression in Eq. (6.34)

does not include the average time spent on the last four-way handshake attempt, in which case

the data frame is successful, i.e., the total time spent in the successful four-way handshake at

the end of the backoff stage. If T 4-way
i denotes the average time spent on a successful four-way

handshake, than T 4-way
i will be given by

T
4-way
i = RTS + CTS +H + E{P} + ACK + 3 × SIFS + 4 × δ. (6.57)

Therefore, the average service time T suc
i spent when a data frame is successfully

transmitted by a node i ∈ V is given by

T
suc
i = TBi

+ T
4-way
i , ∀ i ∈ V. (6.58)

Finally, given that a data frame is dropped with probability pdrop
i , and it is transmit-

ted successfully with probability 1 − pdrop
i , the average service time T ser

i observed at each

node i ∈ V will be given by

T
serv
i =

(
1 − pdrop

i

)
T

suc
i + pdrop

i T
drop
i , ∀i ∈ V. (6.59)
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6.3.4 Average Time Between Successful Data Frame Transmissions

Previously, we have computed the average time a node spends dealing with each

data frame, i.e., the average service time. But, because data frames can be dropped, an im-

portant performance metric of interest is the average time between the completion of two

successful data frame transmissions. It is expected that a random number of data frames are

dropped right after completion of a successful four-way handshake and before the occurrence

of the next successful data frame transmission.

Therefore, it is important to characterize the probability distribution of the number

of dropped data frames between two consecutive successful data frame transmissions. Let D

be a random variable that indicates the number of dropped data frames right after completion

of a successful four-way handshake and before the occurrence of the next successful data

frame transmission. As a consequence of the independence assumption on the successful

handshake between backoff stages, we have that the probability that a given data frame is

dropped is independent of the event that any previous data frames were dropped, which is

equal to pdrop
i in Eq. (6.51) for a node i ∈ V . Consequently, D is geometrically distributed

with parameter pdrop
i . So, after completion of a successful four-way handshake, D frames

will be dropped before a successful data frame transmission occurs. The average service time

for each of the D drops is equal to T drop
i . After the D frame are dropped, node i succeeds

in transmitting a data frame, which has an average service time equal to T suc
i . Consequently,

the average time T i between the completion of two successful data frame transmissions from
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node i ∈ V will be given by

T i =
∞∑

d=0

(
T

suc
i + d T

drop
i

)
P{D = d} =

∞∑

d=0

T
suc
i P{D = d} +

∞∑

d=0

d T
drop
i P{D = d}

= T
suc
i

∞∑

d=0

(
pdrop

i

)d (
1 − pdrop

i

)
+ T

drop
i

∞∑

d=0

d
(
pdrop

i

)d (
1 − pdrop

i

)
, (6.60)

which leads to

T i = T
suc
i +

pdrop
i

1 − pdrop
i

T
drop
i , ∀ i ∈ V. (6.61)

6.3.5 Average Data Service Rate

Once the average service time is known, we can compute the average rate at which

useful data is served by a node i ∈ V. This performance metric indicates how much useful

data is served/processed per unit of time by a specific node in the network. For computation

of this performance metric, we first observe that we are dealing with saturated networks, i.e.,

networks in which all nodes have always a data frame ready for transmission at the head of

their output queues. Consequently, the average data service rate Gi will be given by the ratio

of the average data payload size P i = E{Pi} that node i transmits to the average service time

T
serv
i per data frame, given by Eq. (6.59). In other words,

Gi =
P i(

1 − pdrop
i

)
T

suc
i + pdrop

i T
drop
i

, ∀ i ∈ V. (6.62)

6.3.6 Average Throughput

Finally, we compute the average throughput of each node i ∈ V, which is simply the

average amount of useful data that node i transmits successfully per unit of time. As before,

we start from noticing that we are dealing with saturated networks. Therefore, the average
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throughput Si of each node i ∈ V will be given by the ratio of the average data payload size

P i that node i transmits, to the the average time T i between completion of two successful data

frame transmissions, given by Eq. (6.61). Consequently,

Si =
P i

T
suc
i +

(
pdrop

i

1−pdrop
i

)
T

drop
i

, ∀ i ∈ V. (6.63)

As a final note, we can obtain a relationship between the average data service rate

Gi and the average throughput Si. From Eqs. (6.62) and (6.63), it is easy to show that

Si =
(
1 − pdrop

i

)
Gi, ∀ i ∈ V, (6.64)

i.e., as expected, the average throughput Si is simply the fraction of the average data service

rate Gi corresponding to successful data frame transmissions.

6.4 Model Validation

In this section, we evaluate the accuracy of our analytical model in predicting the

performance of nodes in multihop ad hoc networks that operate according to the IEEE 802.11

standard. We focus on ad hoc networks with static topologies under traffic saturation. Numer-

ical results derived from the analytical model are compared with discrete-event simulations

using the Qualnet Simulator v3.5 [105].

6.4.1 Scenarios Used for Comparison

Radio Channel Model

For the purposes of validation of our modeling framework, we consider a radio

channel model with large-scale path loss propagation effects only. The path loss propagation
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model we choose is the two-ray ground reflection model [111]. We choose a simpler channel

model in order to focus on the model’s ability to faithfully represent interdependencies among

the nodes and the per-node performance metrics. Nonetheless, as discussed in Section 5.3.1,

other signal propagation effects such as shadowing and small-scale multipath fading may be

equally taken into consideration when computing the conditional probabilities f(cr
ik) of a

successful frame reception. In Chapter 8, we study the impact of small-scale multipath fading

channels on the performance of multihop ad hoc networks.

IEEE 802.11 Parameters

Regarding the IEEE 802.11 PHY layer, we use direct sequence spread spectrum

(DSSS) with a raw bit rate of 1 Mbps with DBPSK modulation. Under this configuration,

according to the standard, both preamble and MAC protocol data unit (MPDU) are transmitted

at the same basic rate, under the same modulation scheme [64]. Without loss of generality,

this is done just to ease the analysis and to avoid adding more complexity into the analytical

model by treating each segment separately, with different modulation schemes.

Each node has the same transmit power and, for the given path loss propagation

model, we select receive and carrier sensing thresholds in a way that the radio range is set

to 200 m and carrier sensing range is set to 400 m. Table 7.5.1 summarizes the rest of the

parameters used for PHY and MAC layers.

As in Qualnet, we treat bit errors independently. Hence, if we let γ(cr
ik) denote the

SINR at node r during reception of a bit that was transmitted by node i, and for which the

combination of active interferers is crik (as defined in Section 5.3.1), then, if K is the length
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Table 6.1: IEEE 802.11 Simulation Parameters.
MAC PHY

Wmin 256 Temperature (Kelvin) 290
Wmax 1024 Noise factor 10
MAC Header (bytes) 34 Transmission power (dBm) 10
ACK (bytes) 38 Sensitiviy of PHY (dBm) -87.039
CTS (bytes) 38 Minimum power for
RTS (bytes) 44 received packet (dBm) -76.067
Slot Time (µsec) 20 Packet reception model BER
SIFS (µsec) 10
DIFS (µsec) 50

of the physical layer convergence protocol data unit (PPDU) defined by the IEEE 802.11

standard, and Pb(γ) is the bit-error probability of DBPSK for a certain SINR level γ, the

conditional probability f(crik) of a successful frame reception (as used in Section (5.3.1)) will

be given by

f(crik) = {1 − Pb[γ(c
r
ik)]}K . (6.65)

Simulation Setup

Because of the selected radio range, nodes are randomly placed in an area of 1000×

1000 m, a size big enough to deploy a multihop network. The only constraint imposed is that

the resulting graph is connected. This constraint is added simply to make sure that all nodes

have at least one neighbor, and that considerable channel contention and hidden-terminal ef-

fects are present in the scenarios.

In simulations, each node chooses the same neighbor node (i.e., a node within its

transmission range) for all its transmissions using the same CBR source rate. We pick source

rates high enough to saturate all nodes in the network. Packet sizes are fixed to 1500 bytes

(IP packet) and each simulation run corresponds to 5 minutes of data traffic. We repeat the
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experiment for 50 seeds, with each trial corresponding to a different initial transmission times

at each node. Initial transmission times are randomly chosen within the interval [0, 0.01] s.

This is done to allow the exponential backoff algorithm to be triggered at different instants

in time, at each node, so that different state evolutions are taken into account for the same

topology.

6.4.2 Accuracy of Models

Two aspects of interest in our modeling approach are scalability and per-node per-

formance. To illustrate such aspects, let us consider two network topologies: one with 50

nodes and another with 100 nodes. Figures 6.7 and 6.8 show their respective topologies. In

the figures, the numbers inside the areas indicate the node ID. To provide an idea of the density

of nodes in each topology, a line between two nodes indicates that they are within 200 meters

of one another. As it can be observed, the created topologies provide both highly-dense as

well as poorly-connected areas. Needless to say, interference at a given receiver in the analyt-

ical model and simulations is not confined to only those sources shown directly “connected”

in the figures.

Figure 6.9 shows the simulation and analytical results for the 50-node network.

Figure 6.10 shows the results for the 100-node network. In the graphs, the x axis contains

the node ID, and the y axis shows the respective throughput. As it can be seen, the predicted

performance correlates very well with practically every node in the topology (in some cases,

providing very close results). In the cases where the model is off by some factor, the predicted

performance follows the observed pattern in the majority of the cases.
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Figure 6.7: Network topology for the 50-node network.
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Figure 6.8: Network topology for the 100-node network.

157



0 5 10 15 20 25 30 35 40 45 50
0

50

100

150

200

250

Analytical Model

T
hr

ou
gh

pu
t (

K
bi

t/s
)

Simulation
Analytical Model

Figure 6.9: Throughput: simulations versus analytical model for the 50-node network.
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Figure 6.10: Throughput: simulations versus analytical model for the 100-node network.
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A more statistically significant result is obtained if we evaluate the performance of

our modeling approach over a number of different topologies. For this purpose, we considered

10 network topologies with 100 nodes each, all randomly generated as before. The topologies

used for computating the histogram were similar to that shown in Figure 6.8. We compute the

percentage prediction error with respect to the maximum range of throughput values observed

in simulations (for that particular topology) for each node in each randomly generated topol-

ogy. This way, we weigh the prediction error with respect to the dynamic range of throughput

values obtained in simulations. We obtained a histogram for each topology by counting the

number of nodes within a certain percentage prediction error, and we then averaged the his-

tograms over all topologies. Figure 6.11 shows our results. As we can see, the percentage

prediction error is within 20% in 93.5% of the nodes, showing how close our analytical model

is in predicting the results obtained in discrete-event simulations.
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Figure 6.11: Percentage error prediction histogram over 10 random topologies.
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Another important performance metric we can use to evaluate the accuracy of our

analytical model in predicting the results obtained via discrete-event simulations with respect

to per-node performance is the normalized mean squared prediction error (NMSPE). The

NMSPE is defined as the ratio of the mean squared prediction error to the variance of the

original data we want to predict. More specifically, if {Xi}n
i=1 denotes the set of n values of

data we want to predict, with a sample mean value of X = 1
n

∑n
i=1Xi, and {X̂i}n

i=1 is their

corresponding predicted values, then, the NMSPE is given by

NMSPE =

∑n
i=1(Xi − X̂i)

2

∑n
i=1(Xi −X )2

. (6.66)

The main advantage of the NMSPE is that it indicates how good the individual

predictions are compared to the case where the best prediction we can make about each data

value is equal to the average of the original data. In other words, if X̂i = X for i = 1, . . . , n,

in Eq. (6.66), we have NMSPE = 1. Hence, the relative amount by which the mean squared

prediction error is less than the variance of the original data reflects how much better we are

from predicting the data by just their mean value. In the jargon of linear regression models, it

is the fraction of the variance that is explained by the model.

Figure 6.12 shows the NMSPE computed for each of the 10 topologies with 100

nodes that we used before. As we can see, the analytical model performs quite well. The NM-

SPE is about 0.4 across all topologies investigated, which means that our predictions are 60%

better than if we had predicted each node’s throughput as equal to the average of the simulation

data. Incidentally, it is important to mention that, so far in the literature, no other analytical

model has ever attempted to predict individual throughput values. To date, all proposed ana-

lytical models have only attempted to predict the average throughput. Consequently, it means
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that we are, already, 60% better than any other analytical model that predicts each node’s

throughput only by the average throughput of the IEEE 802.11 ad hoc networks examined

before.
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Figure 6.12: Normalized mean squared prediction error for 10 topologies with 100 nodes each.

Finally, we show the application of our model in predicting the average through-

put for a given network topology. Figure 6.13 shows the comparison between the average

throughput obtained in both simulations and analytical model. As we can see, the analytical

model provides very accurate results compared to simulation results.

6.4.3 Modeling Time

The importance of the above results and the strength of our analytical model become

apparent when we analyze the time required to obtain the above results through simulation and

with our analytical model. In Qualnet, each run of the simulation for the 100-node scenario
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Figure 6.13: Average network throughput of 10 topologies with 100 nodes each.

(consisting of a 5-minute data traffic) takes about 1,118.4 seconds (19.69 minutes) in a Sun

Blade 100 machine running Solaris 5.8. For the 50 seeds needed, this corresponds to 16.41

hours of simulation. In this same machine, our analytical model, implemented in Matlab 6.0,

takes about 0.44 seconds. This corresponds to a time saving of more than 134,000 times.

Clearly, this is a strong argument supporting the case for the need of powerful analytical

models for multihop ad hoc networks, such as the one we are providing here.

6.4.4 Model Limitations

Despite the striking correlations of our analytical model with the results obtained via

simulations, improvements in the model can still be done, especially regarding the modeling

of the IEEE 802.11 itself.

As explained in Section 6.1, the Markov model we used to model the binary ex-
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ponential backoff operation of the IEEE 802.11 DCF MAC has a small simplification with

respect to the original specification. Instead of considering the two retry counters defined by

the standard (the SLRC and the SSRC), we adopted a single retry counter, the RC, to be incre-

mented whenever an RTS or DATA frame is unsuccessfully transmitted. Such simplification

is likely to affect mostly the performance of nodes which are located in neighborhoods under

heavy contention and/or nodes that are too distant of their intended receivers, in which case

the frame losses tend to be more frequent, reflecting on the dynamics of the protocol with

respect to the two retry counters.

In fact, related to the dynamics of the protocol operation is the issue of fairness of

the IEEE 802.11 DCF MAC. As it is well known, the IEEE 802.11 DCF MAC tends to favor

the nodes that have last acquired the channel with respect to a given time instant. This is

because the nodes that succeeded in transmitting their frames reduce their contention window

sizes, while the opposite happens to the nodes that failed to access the channel. Consequently,

a biased behavior towards the nodes with smaller contention window sizes start happening:

they have higher chances to find the channel free than the nodes which are backing off under

bigger contention window sizes. Therefore, a more aggressive behavior is observed at nodes

with smaller contention window sizes, which can obtain higher throughput values and can

cause the “starvation” of the other competing nodes. Unfortunately, the model we introduced

for the operation of the IEEE 802.11 DCF MAC does not attempt to capture the impact of the

fairness problem. Therefore, a more accurate model of the operation of the IEEE 802.11 DCF

MAC should be able to address these issues.
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6.5 Conclusions

We have introduced a novel modeling framework for MAC protocols in multihop ad

hoc networks. The model focuses on the interactions between the MAC layer and any layer(s)

with which it exchanges information (directly or indirectly), and on the impact that each node

has on the dynamics of every other node in the network—all conveniently conveyed through

the use of interference matrices. A key feature of the model is that nodes can be modeled

individually, i.e., it allows a per-node setup of many layer-specific parameters. Moreover, no

spatial probability distribution or special arrangement of nodes is assumed. Instead, it allows

the computation of individual (per-node) performance metrics for any given network topology

and radio channel model. To show the applicability of the modeling framework, we modeled

multihop ad hoc networks using a new analytical model for the IEEE 802.11 DCF.

Our analytical model constitutes a tool for a fast, accurate, and efficient evaluation

of a node’s performance for any system parameter value and topology of an ad hoc network.

We have illustrated this using the IEEE 802.11 DCF as an example. Attempting to characterize

a node’s performance only by simulations would require considerable computational effort,

specially when scalability is one of the main concerns. To be able to draw general conclusions,

simulations would have to be run for a very large number of network sizes and topologies.

Furthermore, if we are interested in evaluating the impact of a single parameter to a node’s

service time, for instance, simulations would have to be repeated for each parameter value of

interest.

Our model was validated through discrete event simulations using the popular Qual-

net tool, and the analytical results show a striking correlation with the results obtained via
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simulation. The importance of the analytical model is that the time needed to obtain the de-

sired results takes a very small fraction of the time required to obtain the same results via

discrete-event simulations.
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Chapter 7

Modeling Ad Hoc Networks that

Utilize Directional Antennas

This chapter presents the first analytical modeling of wireless ad hoc networks that considers

the impact of realistic antenna-gain patterns on network performance. As such, our modeling

approach allows the study of ad hoc networks in which nodes are equipped with directional

antennas. This modeling capability stands out from all previous analytical models, which have

only dealt with omnidirectional or over-simplified antenna gain patterns, and which have not

addressed the specific mechanisms of the medium access control (MAC) protocols used (e.g.,

the backoff mechanism). Our numerical results show that our analytical model predicts the

results obtained via discrete-event simulations very accurately, and does it with a processing

time that is orders of magnitude faster than the time required by simulations. Furthermore,

we show that the simplistic “pie slices” used in prior analytical models for antenna patterns

over-estimate the throughput of the protocols dramatically compared to the results obtained
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using realistic antenna patterns.

7.1 Introduction

Directional antennas (antennas that are able to transmit/receive energy over intended

directions) have a number of advantages over omnidirectional antennas, i.e., antennas that

(ideally) radiate or absorb energy equally well along all directions. Among these advantages,

directional antennas can increase the signaling range without spending extra power, reduce

intersymbol interference (ISI) and flat-fading by canceling or attenuating interferences from

giving directions, and suppress interference between users. In particular, directional antennas

can increase the potential for spatial reuse, thereby increasing system capacity.

A number of protocols for wireless ad hoc networks with directional antennas have

been proposed, mostly on the medium access control (MAC) layer (e.g., [74,75,86,145]). The

vast majority of the performance-evaluation work on MAC protocols that exploit directional

antennas has used discrete-event simulations to model protocol behavior. Only a few works

have attempted to model ad hoc networks with directional antennas analytically. Section 8.2

summarizes this prior work, which has been very limited in that all the analytical models pro-

posed to date have assumed (a) simplistic ways in which packets are offered to a shared chan-

nel, ignoring the specific mechanisms used in MAC protocols (e.g., backoff mechanisms), and

(b) the use of over-simplified antenna gain patterns, like the “pie-slice” and “cone-plus-ball”

antenna models [23,131,144,146]. In the simplistic antenna models used to date, all directions

within a certain angle sector have constant gain, while no power is radiated/absorbed along

the other directions (“pie-slice”), or a lower constant gain is assumed for the directions outside
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the angle sector to represent the back and side lobes of the antenna pattern (“cone-plus-ball”).

In reality, no physical antenna can provide such constant gain for a given angle sector, and real

antenna patterns are far more complex than “pie-slices” or “cone-plus-ball” models. In fact,

real antenna patterns have non-negligible gains in all directions, and often have significant

side and back lobes that can contribute considerably to the amount of perceived noise, leading

to performance degradations such as the ones observed by Ramanathan et al. [96] in a real-

life ad hoc network testbed. Consequently, conclusions about capacity improvements based

on such over-simplified antenna models (e.g., [144] and [95]), may not necessarily reflect the

true potentials or limitations of the use of directional antennas in ad hoc networks.

In this chapter, we present the first analytical modeling of wireless ad hoc networks

that considers the impact of realistic antenna gain patterns on network performance. In partic-

ular, we focus on the modeling of wireless ad hoc networks with directional antennas.

Section 7.3 summarizes the operation of the directional virtual carrier sensing

(DVCS) protocol [114], which we use subsequently to show the accuracy of our analytical

model compared to simulations. Section 7.4 outlines the main issues that arise in the analytical

modeling of ad hoc networks in which nodes use directional antennas. Based on the analytical

model of the IEEE 802.11 developed in chapter 6, we model the DVCS protocol and compare

its accuracy against results obtained with discrete-event simulations using realistic antenna

patterns. The numerical results presented in Section 7.5 indicate that our analytical model

predicts simulation results very accurately, with processing times that are orders of magnitude

faster than simulations. In addition, we show that “pie-slice” models of antenna patterns are

extremely optimistic regarding the benefits of directional antennas. Because simplified an-
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tenna patterns do not have side lobes, average throughputs are dramatically over-estimated.

In the cases we modeled, “pie-slice” patterns renders 200% higher throughput than what is

obtained using realistic antenna patterns. Section 8.5 summarizes our conclusions.

7.2 Related Analytical Work

Most of the work in ad hoc networks with directional antennas has used discrete-

event simulations to model protocol operation and evaluate its performance (e.g., [30,75] and

references therein). As far as the analytical modeling is concerned, most of the previous work

has concentrated on single-hop networks [76, 103, 132, 133]. To date, very few attempts have

been done to the analytical modeling of multihop ad hoc networks with directional anten-

nas. Chang and Chang [23] were arguably the first to analyze the use of directional antennas

in slotted ALOHA and non-persistent CSMA. Their modeling approach closely follows the

formalism used by Takagi and Kleinrock [113], in which nodes are spatially located accord-

ing to a two-dimensional Poisson distribution, radio links are error-free (no physical layer

aspects whatsoever), no acknowledgment traffic exists, and the transmitters have “instanta-

neous” knowledge of successful receptions. They use the “pie-slice” antenna gain model

for the directional antennas. Later, Zander [146] proposed a slightly different approach to

model slotted ALOHA, with the same antenna model and spatial distribution assumptions,

but included a propagation model and treated packet receptions with a simple threshold model

based on signal-to-noise ratio (SNR).

Wang and Garcia-Luna-Aceves [131] introduced the modeling of collision avoid-

ance MAC protocols with directional antennas. Based on the IEEE 802.11 DCF MAC, they
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modeled and analyzed many of its variants with respect to the directional transmission of

control and data packets coupled with omnidirectional or directional receptions (and hybrid

operations). Their modeling approach also follows the work by Takagi and Kleinrock [113]

with respect to the spatial distribution of nodes and absence of physical layer aspects, and the

approach of Wu and Varshney [139] for the modeling of the node activity with a Markov chain

with only three states. The limitations of this effort is that it assumes the “pie-slice” antenna

model, and that transmission probabilities are taken from a “range of small values”, thereby

disregarding the fact that transmission probabilities are protocol-dependent (i.e., they do not

consider the binary exponential backoff operation of the IEEE 802.11 and such parameters as

contention window size or retry limits).

7.3 The Directional Virtual Carrier Sensing (DVCS) Protocol

A number of MAC protocols for ad hoc networks with directional antennas have

been proposed in the past few years. In many cases, however, the proposed protocols have

failed to provide a new MAC protocol in its strict sense, i.e., no new paradigms or mechanisms

at the MAC level were presented. Instead, they have essentially investigated how directional

transmissions/receptions of control/data frames impact network performance under a given

MAC protocol originally designed to work with omnidirectional antennas (e.g., IEEE 802.11).

Examples of such proposals include [74], [86], [95], and [131]. Few works have tried to

propose new MAC-level mechanisms that attempt to take full advantage of the capabilities

provided by directional antennas. One of the first such attempts was the directional virtual

carrier sensing protocol (DVCS) proposed by Takai et al. [114].
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The main idea behind DVCS is to allow contention-based MAC protocols to de-

termine direction-specific channel availability. For that, DVCS uses the directional network

allocation vector (DNAV), a directional version of the network allocation vector (NAV) of

the IEEE 802.11, which contains information about the total duration of a transaction that is

about to happen over the channel. During this time, the node cannot transmit any frame to

the channel, reserving it for others do it. In DVCS, the DNAV reserves the channel for others

only in a range of directions. To accomplish this, DVCS requires minimal information from

the underlying physical device, such as the angle of arrival (AOA) and the antenna gain for

each signal, features that can be readily available at the physical layer.

Multiple DNAVs can be set for a node, and each DNAV is associated with a direction

and a width. Every node using DVCS maintains a unique timer for each DNAV, and updates

the direction, width, and expiration time of each DNAV every time the physical layer gives

newer information on the corresponding ongoing transmission. DVCS determines that the

channel is available for a specific direction when no DNAV covers that direction.

In DVCS, each node caches estimated AOAs from neighboring nodes every time

it hears any signal, regardless of whether the signal is addressed to it. If a node has data to

send, it first checks if AOA information for the particular neighbor has been cached. If yes, it

beamforms the directional antenna towards the cached AOA direction to send an RTS frame.

Otherwise, the frame is transmitted omnidirectionally. Updates are done every time the node

receives a newer signal from the neighbor, and it invalidates the cache if it fails to get the CTS

back from the neighbor after 4 failed directional transmissions of RTS frames. Subsequent

RTS frames are sent omnnidirectionally.
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When the node receives an RTS frame from a neighbor, it adapts its beam pattern

to maximize the received power and locks the pattern for the CTS transmission. If the node

transmitted an RTS frame to a neighbor, it locks the beam pattern after it receives the CTS

frame from the neighbor. The beam patterns at both sides are used for both transmission and

reception, and are unlocked after the ACK frame is transmitted. We refer the reader to [114]

for more details.

7.4 Challenges in the Modeling of Wireless Ad Hoc Networks with

Directional Antennas

Many issues arise in the modeling the behavior of an ad hoc network with directional

antennas accurately. A good analytical model should be able to incorporate the impact of

realistic antenna-gain patterns under specific radio channel models, which has never been

done before, as well as include the intricate interactions between the MAC layer—designed to

operate with directional antennas—and the many aspects of the underlying PHY layer. Most

importantly, the model should capture each node’s dynamics resulting from its interaction

with every other node in the network, a core phenomenon within a wireless ad hoc network.

In the case of an ad hoc network using DVCS, for example, one needs to translate

into the analytical model how the DNAV works, and which events at the PHY layer are critical

at each step of the protocol operation. For instance, during a node’s carrier sensing operation,

only signal transmissions perceived within the range of directions of the target receiver can

interfere with the node’s backoff operation. In addition, because the node in backoff switches
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to omnidirectional mode, the relative antenna gains between this node and all the other nodes

will be different from the case when this node is actually transmitting/receiving a frame. In

the latter case, the node selects/forms a directional beam pattern to transmit/receive a frame,

which will lead to different relative antenna gains with respect to every other node in the

network.

Because of the richness of the DVCS operation, and because it is built upon the

IEEE 802.11 DCF MAC, we can use the model for the IEEE 802.11 DCF MAC we developed

in Chapter 6 to capture the operation of the DVCS and its DNAV mechanism. Next section,

we present the model validation of our analytical modeling.

7.5 Model Validation

In this Section, we evaluate the accuracy of the analytical model in predicting the

performance of multihop ad hoc networks operating with directional antennas under the di-

rectional virtual carrier sensing protocol (DVCS) MAC protocol [114]. The DVCS allows

contention-based MAC protocols to determine direction-specific channel availability. The

DVCS uses the directional network allocation vector (DNAV), a directional version of the

network allocation vector (NAV) of the IEEE 802.11, which contains information about the

duration of a transaction that is about to happen on the channel. During this time, the node

cannot transmit any frame to the channel, reserving it for others do it. In DVCS, the DNAV

reserves the channel for others only in a range of directions, and determines that the channel

is available for a specific direction when no DNAV covers that direction. We refer the reader

to [114] for more details.
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7.5.1 Simulation and Modeling Setup

We implement the analytical model in MatlabTM 7.0 [81], and conduct discrete-

event simulations in QualnetTM v3.5 [105]. For the directional antennas, we use a switched-

beam antenna system with the default antenna gain pattern provided by QualnetTM, as shown

in Figure 7.1. As in [114], we only focus on interference reduction, i.e., power control is
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Figure 7.1: Antenna gain pattern used for simulations and the analytical model. The figure shows two
antenna patterns with boresight angles at 0 and 90 degrees, respectively.

enforced at the transmitter, decreasing the transmit power to compensate for the gain yielded

towards the antenna boresight (15 dBi). Consequently, no communication range extension is

in place1.

The selected path loss propagation model is the two-ray ground reflection model.

No shadowing or small-scale multipath fading is considered, and bit errors are treated inde-

pendently, as it is done in QualnetTM. Nodes are randomly placed in an area of 1500×1500 m.
1There is an inherent trade-off between communication range extension and interference reduction [95, 131].
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Table 7.1: Simulation Parameters: MAC and PHY layers.
MAC PHY

Wmin 32 Temperature (Kelvin) 290
Wmax 1024 Noise factor 10
MAC Header (bytes) 34 Transmission power (dBm) 15
ACK (bytes) 38 Receive Sensitivity (dBm) -91.0
CTS (bytes) 38 Receive Threshold (dBm) -81.0
RTS (bytes) 44 Packet reception model BER
Slot Time (µsec) 20 Directional Trans. Power (dBm) 0.0
SIFS (µsec) 10 RX Directional Sensitivity -75.0
DIFS (µsec) 50 DNAV delta angle (degrees) 37.0

For the physical layer, we use the direct sequence spread spectrum (DSSS) IEEE 802.11 PHY,

with a raw bit rate of 1 Mbps under DBPSK modulation. Table 7.5.1 summarizes the rest of

the parameters used for the PHY and MAC layers.

The focus of this paper is on the modeling capability of dealing with directional

antennas and on the modeling of DVCS itself. Therefore, although we have presented the

formalism for dealing with multiple receivers and packet size distributions, these features will

not be treated here, as their impact on network performance deserves an analysis on its own.

Hence, each node has a single, one-hop receiver for its packets throughout the simulation

time, to which it will send fixed-size packets of 1500 bytes (IP packet) generated from a CBR

source. The source rate is high enough to saturate all nodes. Each simulation run corresponds

to 5 minutes of data traffic, and the experiment is repeated for 20 seeds, with each trial cor-

responding to a different initial transmission time for each node. Initial transmission times

are randomly chosen within the interval [0, 0.01] s. This is done to allow the IEEE 802.11

exponential backoff algorithm to be triggered at different time instants at each node, so that

different state evolutions occur within the same topology.
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Because we analyze a static scenario, we let all RTS transmissions to be directional,

as opposed to the default specification of DVCS, which proposes RTS to be transmitted om-

nidirectionally after 4 consecutive failed attempts, in which case it is assumed that the failure

to get a CTS back is due to an inaccurate knowledge of the right direction to transmit (due to

mobility).

7.5.2 Numerical Results

One of the advantages of our modeling approach is the ability to obtain per node

performance metrics for a given network topology under a specific radio propagation model

and detailed PHY/MAC layers [19]. The power of our modeling approach is best appreciated

in the computation of the average throughput for a given network scenario. Figure 7.2 shows

the average throughput results computed for 10 random topologies with 100 nodes each. As

we can see, the model is able to predict the average throughput very accurately. Figure 7.3

contains a histogram for the average number of nodes within a certain percentage prediction

error. The percentage prediction error is computed with respect to the maximum range of

throughput values observed in simulations for each node in each randomly generated topology.

The histogram is the average of the 10 histograms over all topologies. According to our results,

the percentage prediction error is within 20% for about 82% of the nodes. As highlighted

in [19], the strength of our analytical model become also apparent when we compare the time

required to obtain the above results through simulations and with the analytical model. Each

simulation run in Qualnet for the 100-node scenario corresponding to 5 min of data traffic

takes about 3060 s (51 min) in a Sun Blade 100 machine running Solaris 5.9. For the 20 seeds
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Figure 7.2: Average throughput for 10 random topologies with 100 nodes.

used, this corresponds to 17 hours of simulation. Using Matlab 7.0 in this same machine, our

analytical model generates results in about 22 s. This corresponds to a time saving of 2800

times. The accuracy and speed attained by our analytical model compared to simulations

enables the study of many physical-layer parameters associated with antenna-gain patterns on

the performance of a MAC protocol.

7.6 Realistic versus Simplified Antenna-Gain Patterns

In this Section, we show how misleading it can be the modeling of ad hoc networks

with directional antennas based on over-simplified antenna-gain patterns like, for instance,

the “pie-slice” or the “cone-plus-ball” antenna models. For this purpose, we use the same

switched-beam antenna system as before, but with antenna-gain patterns that follow a “pie-

slice” antenna model, shown in Figure 7.4.
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Figure 7.3: Percentage error prediction histogram over 10 random topologies with 100 nodes.

Because the previous switched-beam antenna system had 8 main patterns (from

which the system selects the best pattern to transmit/receive), the pie-slice antenna model also

has 8 patterns, each corresponding to a sector of 45 degrees. Inside each sector, the gain is 15

dBi, whereas outside the sector the gain is −41.84 dBi, which is the minimum observed gain

in the antenna-gain pattern of Figure 7.1.

Keeping the same MAC- and PHY-layer parameters as used in Section 7.5, we com-

pute the average throughput for 10 random topologies with a 100 nodes each. The numerical

results corresponding to both antenna-gain patterns are shown in Figure 7.5. As we can see,

throughput results for ad hoc networks using over-simplified antenna gain patterns are too

optimistic. The results suggest an increase in average throughput of more than 200% for the

pie-slice antenna patterns. Obviously, such high average throughput is a direct consequence

of the fact that no side lobes are present in the pie-slice model, and also non-negligible gains
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Figure 7.4: Pie-slice antenna-gain pattern used for comparison with the realistic antenna-gain model
shown in Fig. 7.1.

are present at all directions in the realistic antenna gain pattern. Therefore, the use of over-

simplified antenna gain patterns in the study of ad hoc networks with directional antennas do

not reflect the true potentials and limitations that this technology can achieve.

7.7 Conclusions

This chapter presented the first analytical modeling of wireless ad hoc networks that

considered the impact of realistic antenna gain patterns on network performance. As such, our

modeling approach allows the study of ad hoc networks equipped with directional antennas,

i.e., antenna systems that are able to transmit/receive energy over preferred directions. We

validated our analytical model by comparing its predictions with results obtained through

a state-of-the-art simulation package. The results obtained show that our analytical model

179



1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

300

Topology Number

T
hr

ou
gh

pu
t (

K
bi

t/s
)

Realistic Pattern
Pie−slice Pattern

Figure 7.5: Average throughput results for 10 topologies with 100 nodes each comparing the predicted
performance using the “pie-slice” antenna-gain pattern and a realistic one.

predicts simulation results very accurately, with a processing time that is orders of magnitude

faster than simulations. Furthermore, we show that the “pie-slice” models for antenna patterns

used in the past exaggerate the throughout attained in a network with directional antennas.
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Chapter 8

Modeling Ad Hoc Networks that

Utilize Space-Time Coding

This chapter presents the first analytical model for ad hoc networks equipped with multiple-

input multiple-output (MIMO) radios using space-time coding (STC) that considers the impact

of the underlying radio-based topology on network performance. In particular, we consider

the space-time block coding (STBC) technique known as the “Alamouti scheme.” We derive

the effective signal-to-interference-plus-noise density ratio (SINR) of the Alamouti scheme

under multiple access interference (MAI), and we propose the moment generating function

(MGF) method to derive closed-form expressions for its symbol error probability under dif-

ferent modulation schemes when fading paths are independent but not necessarily identically

distributed. The impact of the Alamouti scheme on IEEE 802.11 ad hoc networks is studied by

taking into account the impact of errors in both control and data frames, the carrier-sensing ac-

tivity, and the finite-retry limit of frame retransmissions as derived in Chapter 6. We apply the
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Alamouti scheme to different antenna system configurations and compare their performance

with respect to the basic single-input-single-output (SISO) IEEE 802.11 DCF MAC.

8.1 Introduction

Recent information-theoretic results [136], [43, 44], [119] have shown that large

gains in communication capacity over wireless channels can be obtained if multiple antenna

elements are used in both ends of the wireless link—the so-called multiple-input multiple-

output (MIMO) systems. As a consequence, MIMO technology has emerged as one of the

most promising fields in modern communications with a chance to resolve the bottleneck

capacity of future high-demand wireless networks [53, 85].

In practice, however, achieving the high capacity gains promised by theory requires

the development of algorithms and signal design/processing techniques that are able to trade

off system complexity with performance (the theory only provides performance bounds based

on algorithms/codes with unbounded complexity or latency [53]). One such set of practical

signal design techniques is space-time coding (STC) [117], [129]. As the name suggests,

STC exploits both temporal and spatial dimensions inherent in the use of multiple spatially-

distributed antennas to design codes that aim to achieve the capacity limits of MIMO channels.

In the space-time encoder, code symbols are generated and transmitted simultaneously from

each antenna in a way that diversity, array, and/or coding gains can be obtained under high

spectral efficiency with the use of appropriate signal processing and decoding procedures at

the receiver.

Despite the enormous advantages envisaged with the use of MIMO technology, to
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date, the majority of the work in ad hoc networks equipped with multiple antennas has focused

on solutions in which the primary goal is to obtain a more reliable communication link by fo-

cusing energy into desired directions (“directional antennas”). So far, very few works have

attempted to integrate MIMO systems into ad hoc networks, and little is known about the im-

pact of such technology on the performance of ad hoc networks under specific medium access

control (MAC) protocols. Section 8.2 reviews the prior work on MIMO ad hoc networks.

Although a cross-layer design approach to both physical (PHY) and MAC layers

is likely to obtain the most benefit out of MIMO technology, it is important to know what is

the impact of MIMO on the performance of ad hoc networks if the MAC layer is kept intact.

In fact, such separation of roles may be unavoidable in many cases (e.g., the IEEE 802.11

standard states that [64, pp. 149] “the architecture of the IEEE 802.11 MAC is intended to be

PHY independent.”). Accordingly, this chapter attempts to address the following questions by

introducing the first analytical model of MIMO ad hoc networks with specific PHY and MAC

layers:

1. How do the PHY improvements provided by a specific MIMO technology reflect on

overall network performance for a given MAC protocol?

2. Are the gains significant enough to justify the added complexity and processing cost

incurred by the MIMO technology?

3. How do the performance gains obtained with multiple-input single-output (MISO) or

MIMO systems compare to the simplest single-input single-output (SISO) case?

4. What are the relative gains in performance as the number of antenna elements increases?
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We investigate the impact of space-time block codes (STBC) [118] in ad hoc net-

works operating with the IEEE 802.11 DCF MAC. For the STBC, we investigate the use of

the Alamouti scheme [4], which is currently part of both W-CDMA and CDMA-2000 stan-

dards. Among its advantages, the Alamouti scheme supports maximum-likelihood detection

based only on linear processing at the receiver and it does not require channel state informa-

tion (CSI) at the transmitter. Section 8.3.1 describes the basics of the Alamouti scheme, with

an example of a MIMO system with two transmit antennas and two receive antennas. Sec-

tion 8.3.2 derives the effective signal-to-interference-plus-noise density ratio (SINR) of the

Alamouti scheme under multiple access interference (MAI), which is key for the performance

of Alamouti-enabled MIMO ad hoc networks. Also, Section 8.3.3 proposes the use of the

moment generating function (MGF) method to derive closed-form expressions for the symbol

error probability of the Alamouti scheme under different modulation schemes when fading

paths are independent but not necessarily identically distributed.

In Section 8.4, we study the impact of the Alamouti scheme into IEEE 802.11 ad

hoc networks. Because of its flexibility, we study the use of Alamouti scheme in MISO and

MIMO ad hoc networks, comparing their relative performance with respect to SISO networks.

Section 8.5 summarizes our conclusions.

8.2 Related Work

So far, not much work has been done on MIMO ad hoc networks. Sundaresan

et al. [112] introduced a distributed MAC protocol for MIMO links based on a centralized

MAC that applies spatial multiplexing assuming closed-loop MIMO and ideal interference
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cancellation. Tang et al. [115] proposed the design of a new transceiver based on a space-

time interference canceling technique for MIMO-OFDM, and a MAC protocol (MIMA-MAC)

that takes advantage of their transceiver capability in demodulating multiple data streams.

Park et al. [90] designed a MAC protocol (SPACE-MAC) for MIMO links based on MIMO

beamforming, i.e., a MIMO technique by which the same symbol is transmitted from each

antenna according to a pre-selected weighting scheme1. At demodulation, appropriate weights

are selected at the receive antennas to recover the transmitted symbol. SPACE-MAC selects

the weights in such a way that simultaneous transmissions may occur among nodes within

range of each other, improving the spatial reuse.

Regarding the use of space-time coding in ad hoc networks, Stamoulis and Al-

Dhahir [109] investigated the impact of space-time block codes on IEEE 802.11a wireless

local area networks (WLANs) operating in ad hoc mode. They used simulations to assess

the benefits of the Alamouti scheme on the performance of upper-layer protocols like TCP.

Their work assumes fully-connected networks (i.e., no hidden terminals) and focuses on the

simplest Alamouti scheme, i.e., a MISO system with two transmit antennas and one receive

antenna.

Hu and Zhang [63] attempted to model MIMO ad hoc networks by focusing on

IEEE 802.11 ad hoc networks operating with STBC. For the modeling of the IEEE 802.11

DCF MAC, they used the same Markov model as the one introduced by Bianchi [12], which

does not include the impact of the finite-retry limits or the carrier-sensing activity of the nodes,

and assumes that collisions occur only among RTS frames. In addition, they disregarded
1The term “beamforming” is also used in the context of smart antennas to describe the adjustment of the

antenna weights to direct the antenna beam in a given direction.
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the impact of the network topology, and assumed that “events experienced by one user are

statistically the same as those of other users,” stating that each node has the same average

throughput. In fact, in their model, each node is surrounded by the same average number of

nodes, and the multihop network simplifies, in practice, to many “single-hop” networks, where

interactions happen only with immediate neighbors. Therefore, their model ignores the impact

of the topology and the radio connectivity among all nodes in the network. Consequently, it

does not capture the interactions between PHY and MAC layers, which is key for an accurate

evaluation of the impact of any PHY-layer aspect on the performance of a multihop network.

8.3 Space-Time Coding (STC)

The fundamentals of space-time coding (STC) were first established by Tarokh et

al. [117] who proposed space-time trellis codes (STTC). STTC is an extension of standard

trellis codes to MIMO systems, with the difference that the decoding procedure of STTC

requires multidimensional Viterbi algorithms at the receiver. They designed codes that attain

a diversity order equal to the number of transmit antennas, and a coding gain that depends on

the complexity of the code (i.e., number of states in the trellis) without incurring any loss in

bandwidth efficiency. Unfortunately, a major drawback of STTC is the fact that the decoding

complexity increases exponentially as a function of the diversity level and transmission rate.

Later, Alamouti [4] proposed a space-time block coding (STBC) scheme for trans-

mission with two antennas that supports maximum-likelihood detection based only on linear

processing at the receiver. In addition, the Alamouti scheme does not require any channel

feedback from the receiver to the transmitter (the channel is unknown to the transmitter) and it
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does not incur any bandwidth expansion. The basic Alamouti scheme consists of two transmit

antennas and one receive antenna (MISO system), but it can be easily generalized to the case

of two transmit antennas andM receive antennas to provide a diversity order of 2M. Tarokh et

al. [118] generalized this scheme to an arbitrary number of transmit antennas. In this chapter,

however, we focus on systems with two transmit antennas and M receive antennas.

Next, we present a short overview of the basics of the Alamouti scheme applied to

a MIMO system with two transmit antennas and two receive antennas. Following that, we

compute the impact of multiple access interference (MAI) in an ad hoc network operating

with the Alamouti scheme, and show a simple way to compute the symbol error probability

of the Alamouti scheme under multipath fading.

8.3.1 Example: The 2 × 2 MIMO Alamouti Scheme

The Alamouti scheme [4] works over two symbol periods. Over the first symbol

period, two different symbols s1 and s2 are transmitted simultaneously from antennas 1 and

2, respectively. During the next symbol period, symbol −s∗2 is transmitted from antenna 1, and

symbol s∗1 is transmitted from antenna 2 (where * indicates the complex conjugate operation).

At each symbol period, the energy Es available at the transmitter is equally divided between

the two antennas, i.e., each symbol has energy Es/2 (no extra power is needed). It is assumed

that the channel remains constant over two consecutive symbol periods and it is frequency

flat, with hkl = |hkl|ejθkl , k, l = 1, 2, representing the complex channel gains between the

lth transmit antenna and the kth receive antenna. Under such conditions, the 2 × 2 channel
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matrix H is given by

H =



h11 h12

h21 h22


 , (8.1)

and the received signals y1 and y2 at the receive antenna array over consecutive symbol peri-

ods are given by

y1 =



h11 h12

h21 h22






s1

s2


+



n1

n2


 , (8.2)

y2 =



h11 h12

h21 h22







−s∗2

s∗1


+



n3

n4


 , (8.3)

where n1, n2, n3, and n4 are assumed to be uncorrelated AWGN samples with zero mean and

power N0.

The receiver uses the sequentially-received symbols y1 and y2 to form the vector

y = [y1 y∗
2]

T , given by

y =




y1

y∗
2


 =




h11 h12

h21 h22

h∗12 −h∗11

h∗22 −h∗21






s1

s2


+




n1

n2

n∗3

n∗4




= HA s + n, (8.4)

where s = [s1 s2]
T and n = [n1 n2 n

∗
3 n

∗
4]

T . By construction, HA is orthogonal irrespective

of the channel realization, i.e., HH
A HA = ‖H‖2

F I2, where I2 is the 2 × 2 identity matrix and

‖H‖2
F is the frobenius norm of H, i.e.,

‖H‖2
F =

∑

i

∑

j

|hij |2. (8.5)
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By defining the new vector z = HH
A y, one gets

z = ‖H‖2
F I2 s + ñ, (8.6)

where ñ = HH
A n is a complex Gaussian noise vector with E{ñ} = 0, and covariance matrix

E{ññH} = ‖H‖2
FN0I2. The diagonal nature of z effectively decouples the two symbol

transmissions, so that each component of z corresponds to one of the transmitted symbols:

zi = ‖H‖2
F si + ñi, i = 1, 2. (8.7)

Thus, the received SNR corresponds to the SNR for zi, which is given by [56]

SNR =
‖H‖2

FEs

2N0
, (8.8)

where the factor of 2 comes from the fact that si is transmitted using half of the total energy

Es.

8.3.2 Multiple Access Interference (MAI)

In order to model MIMO ad hoc networks properly, we need to characterize the

impact of MAI on the signaling technique of choice, taking into account the MIMO nature of

the channel. In this section, we consider the impact of MAI in ad hoc networks operating with

the Alamouti scheme. Without loss of generality, we consider the simplest Alamouti scheme,

which consists of two transmit antennas and one receive antenna (MISO channel). In this case,

we assume that every node in the network has two antennas, but only the signals captured by

one of the antennas are decoded/demodulated for signal reception.

Let hj
1k and hj

2k denote the complex channel gains between antennas 1 and 2 of

node k and the receive antenna of node j, respectively (notice that we have a 1 × 2 channel
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matrix in the MISO case). Likewise, let s1k and s2k denote the two symbols transmitted from

antennas 1 and 2 of node k. Now, let us assume that node i transmits a signal to node j and

that other K nodes are transmitting simultaneously over the channel (not necessarily to node

j). Therefore, the signals yj
1 and yj

2 received by node j over two consecutive symbol periods

are given by

yj
1 = hj

1is1i + hj
2is2i +

K∑

k=1

(
hj

1ks1k + hj
2ks2k

)

︸ ︷︷ ︸
MAI

, (8.9)

yj
2 = −hj

1is
∗
2i + hj

2is
∗
1i +

K∑

k=1

(
−hj

1ks
∗
2k + hj

2ks
∗
1k

)

︸ ︷︷ ︸
MAI

, (8.10)

where, as indicated, the terms under summation form the multiple access interference (MAI)

at node j. As explained before, node j constructs the vector yj = [yj
1 y

j∗
2 ]T , leading to

yj =



hj

1i hj
2i

hj∗
2i −hj∗

1i






s1i

s2i


+

K∑

k=1



hj

1k hj
2k

hj∗
2k −hj∗

1k






s1k

s2k




= Hi si +

K∑

k=1

Hk sk (8.11)

As in the previous section, it is assumed that node j estimates the channel perfectly

from the signals received by node i, i.e., node j has accurate estimates of the channel gains

hj
1i and hj

2i. Therefore, node j forms the new vector zj = HH
i yj given by

zj = HH
i Hi si +

K∑

k=1

HH
i Hk sk = ‖Hi‖2

F I2 si + m, (8.12)

where m is the MAI term given by m =
∑K

k=1 HH
i Hk sk. Notice the resemblance between

Eqs. (8.12) and (8.6). Assuming that the symbols are equally probable and drawn from a
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symmetric constellation, then E{m} = 0. For the covariance matrix E{mmH}, we have

E{mmH} = E





(
K∑

k=1

HH
i Hk sk

)(
K∑

l=1

HH
i Hl sl

)H




=
K∑

k=1

K∑

l=1

HH
i Hk E{sks

H
l }HH

l Hi. (8.13)

If we also make the common assumption that symbols are generated independently

at each node, the double summation in Eq. (8.13) simplifies to

E{mmH} =
K∑

k=1

HH
i Hk E{sks

H
k }HH

k Hi =
K∑

k=1

HH
i Hk σ

2
sI2H

H
k Hi

= σ2
s‖Hi‖2

F

K∑

k=1

‖Hk‖2
F I2, (8.14)

where σ2
s = E{s1ks

∗
1k} = E{s2ks

∗
2k} is the power of the transmitted symbols (remember

that they are transmitted with the same power). Hence, as in the previous section, the signal-

to-interference-ratio (SIR) for each received symbol corresponds to the SIR for zi, which is

given by

SIR =
‖Hi‖2

FEs/2∑
k ‖Hk‖2

FEs/2
(8.15)

This last expression tells us that the interference caused by all simultaneous trans-

missions is nothing but the sum of all the signal powers received by node j from all possible

transmit-receive antenna pairs formed between node j and the transmitting nodes. Finally, if

we consider both the additive background noise (from previous section) and the MAI, we have

the signal-to-interference-plus-noise (SINR) ratio, given by

SINR =
‖Hi‖2

FEs/2

N0 +
∑

k ‖Hk‖2
FEs/2

. (8.16)
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8.3.3 Symbol Error Probability

The symbol error probability of the Alamouti scheme can be easily obtained if we

notice that the received SNR is the sum of the SNRs from each individual path2, i.e., from

Eqs. (8.5) and (8.8),

SNR = γ =

2∑

i=1

MR∑

j=1

γij =

2∑

i=1

MR∑

j=1

|hij |2Es

2N0
, (8.17)

whereMR is the number of receive antennas. Such additive property of SNRs suggests the use

of the moment generating function (MGF) method for computation of the symbol error prob-

ability of different modulation schemes [56]. The MGF for a nonnegative random variable γ

with pdf pγ(γ), γ ≥ 0, is defined as

M(s) =

∫ ∞

0
pγ(γ)esγdγ. (8.18)

The idea behind the MGF approach is to express the probability of error in AWGN

for the modulation of interest as an exponential function of γ. For instance, let us suppose that

the probability of symbol error Ps in AWGN for the modulation of interest is expressed in the

form

Ps(γ) = c1e
−c2γ , (8.19)

where c1 and c2 are constants. Hence, because the average probability of symbol error is

computed by integrating the error probability in AWGN over the fading distribution [56], we

have

P s =

∫ ∞

0
Ps(γ)pγ(γ)dγ =

∫ ∞

0
c1e

−c2γpγ(γ)dγ = c1M(−c2),

2The same additive property of SNRs is observed in receiver diversity with maximal ratio combining
(MRC) [56].
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where M(−c2) is the MGF of γ evaluated at −c2.

Given that, the symbol error probability of the Alamouti scheme becomes particu-

larly simple if it is assumed that the fading paths are independent but not necessarily identi-

cally distributed. In this case, the branch SNRs are independent and the joint pdf of γ becomes

a product of the individual pdfs, i.e., pγ1,...,γM
(γ1, . . . , γ2M ) = pγ1

(γ1) · · · pγ2M
(γ2M ). Using

this factorization and substituting γ = γ1 + . . .+ γ2M in Eq. (8.20) yields

P s = c1

∫ ∞

0
· · ·
∫ ∞

0
exp

[
−c2

(
2M∑

i=1

γi

)]
2M∏

i=1

pγi
(γi)dγi

= c1

2M∏

i=1

∫ ∞

0
e−c2γipγi

(γi)dγi = c1

2M∏

i=1

Mγi
(−c2) (8.20)

For instance, the symbol error probability for DBPSK under AWGN isPs = Pb(γb) =

exp(−γb)/2, i.e., c1 = 0.5 and c2 = 1. Hence, the average probability of bit error under

DBPSK is given by

P b =
1

2

2M∏

i=1

Mγi
(−1). (8.21)

For Rician fading, the moment generating function is given by [56]

Mγ(s) =
1 +K

1 +K − sγ
exp

[
Ksγ

1 +K − sγ

]
. (8.22)

Substituting Eq. (8.22) into Eq. (8.21) we obtain the average probability of bit error

for the Alamouti scheme with two transmit antennas and M receive antennas in the case of

DBPSK modulation under Rician fading, which is given by

P b =
1

2

[
1 +K

1 +K + γ

]2M

exp

[ −2MKγ

1 +K + γ

]
. (8.23)

Following the same approach, one can obtain average error probabilities for many

other modulations schemes under multipath fading [56].
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As a final note, the same development can be used when considering the SINR of

Eq. (8.16). In this case, as usual, the aggregate MAI is assumed to be Gaussian-distributed,

with the mean and covariance matrix as computed before, and assuming that the channel gains

in the denominator of Eq. (8.16) correspond to average channel gains, which are nothing but,

the channel gains due to path-loss propagation effects.

8.4 Performance of MIMO Ad Hoc Networks

In this Section, we evaluate the performance of ad hoc networks that employ the

Alamouti scheme at the physical layer and operate with the modified IEEE 802.11 DCF MAC

described before. We investigate both MISO and MIMO ad hoc networks by taking advantage

of the flexibility of the Alamouti scheme (it works with any number M of receive antennas,

as explained in Section 8.3). Table II contains the configurations of the antenna systems we

study. For the MISO case, we assume that all nodes are equipped with two antennas. In

this case, both antennas are used during transmission (necessary for the Alamouti scheme)

and, during reception, only the signals arriving at one of the antennas are conveyed to the

appropriate decoding/demodulation stages. For the MIMO cases, the opposite applies, i.e., all

nodes are equipped with M ≥ 2 antennas, but only two of them are used during transmission,

whereas all antennas are used during reception. The performance of both MISO and MIMO

networks are compared with the basic SISO network (nodes equipped with a single antenna).

In the following, we will refer to a network with N transmit antennas and M receive antennas

as an N ×M MISO/MIMO network (depending on the values of N and M ).

One of the advantages of MIMO systems is to combat time-varying multipath fad-
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Table 8.1: Antenna Configurations used for Performance Evaluation

System N. of Transmit Antennas N. of Receive Antennas
MISO 2 1
MIMO 2 2
MIMO 2 4
MIMO 2 6

ing. For our study, we assume a multipath fading following a Rician model [56]. We choose

the Rician model because it is appropriate for scenarios where there exists both line-of-sight

(LOS) and non-line-of-sight (NLOS) signals. The key parameter of the Rician distribution is

the K parameter, which expresses the ratio of the power of the LOS signal to the power of the

NLOS signals. A small value of K indicates a rich scattering environment with a weak LOS

signal (strong fading). A large value of K indicates a decrease in multipath propagation and,

therefore, weak fading. We assume that fading is frequency flat and independent at each path.

Thus, we can use the bit-error computation procedures presented in Section 8.3.3.

For the numerical results, we use the same setup and PHY/MAC parameters as

described in Section 7.5, with the exception of the inclusion of multipath fading. We compute

the average network throughput over 10 random topologies with 100 nodes each, for different

values of the Rician parameter K and for the antenna systems indicated in Table II. Figure 8.1

shows the numerical results. The bars in the graph indicate the standard deviation of the

computed averages. As we can see, the use of the Alamouti scheme does improve performance

significantly, especially when fading is strong (small values of K). For instance, the gains in

average throughput of the 2×6 MIMO over the simplest SISO network are almost 400% when

K = 5. Improvements in throughput are perceived even for the basic MISO configuration,

which improves throughput over SISO in more than 200% under strong fading, and about
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125% without much fading (large K).

Another important aspect to observe it that, as the number of receive antennas in-

creases (M > 2), the relative gains in average throughput diminishes with respect to the

previous configuration. Therefore, we observe that adding more antennas at each node does

not give a linear increase in performance. As the number of antennas increases, the errors in

the channel are better combated, and throughput becomes basically bounded by the degree

of contention in the network. In other words, it is the MAC layer that limits the achiev-

able throughput once the PHY layer attains its best performance. Such results are expected,

because the Alamouti scheme is a transmitter diversity scheme. In other words, it was not

designed to provide data rate increases (capacity gains) through spatial multiplexing. In-

stead, it provides a more robust channel through diversity and array gains, as explained in

Section 8.3.1.

The above results suggest that the use (or not) of more antennas depends on the

amount of contention in place, which, in turn, depends on the total number of nodes, their

distribution in the terrain, and the efficiency of the underlying MAC protocol in scheduling

each node’s transmissions. For the scenarios we studied, it seems that the best trade off that

can achieved between the number of antennas and the system complexity is the 2×2 MIMO

configuration. Using four or six antennas does increase throughput, but the relative gains are

not significant enough to justify the added system complexity. At the same time, the MISO

network already has 2 antennas at each node, and the cost to implement a 2×2 MIMO network

is just the extra internal processing of the signals captured by the second antenna already in

place.
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Figure 8.1: Average network throughput versus the value of the Rician parameter K for different
antenna systems. The results compare MISO and MIMO Alamouti-enabled 802.11 ad hoc networks
with SISO 802.11 ad hoc networks.

8.5 Conclusions

In this chapter, presented the first analytical model for wireless ad hoc networks

equipped with multiple-input multiple-output (MIMO) radios using space-time coding (STC)

that considered the impact of the underlying radio-based topology on network performance.

In particular, we considered the application of space-time block coding (STBC) in the form of

a transmitter diversity technique known as the “Alamouti scheme.” We derived the effective

signal-to-interference-plus-noise density ratio (SINR) of the Alamouti scheme under multiple

access interference (MAI), and we proposed the moment generating function (MGF) method

to derive closed-form expressions for its symbol error probability under different modulation

schemes when fading paths are independent but not necessarily identically distributed.
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The impact of the Alamouti scheme on IEEE 802.11 DCF MAC was studied by

taking into account the impact of errors in both control and data frames, the carrier-sensing

activity, and the finite-retry limit of frame retransmissions, as derived in Chapter 6. We studied

the performance of the Alamouti scheme in IEEE 802.11 ad hoc networks by comparing the

relative gains in performance between SISO, MISO, and MIMO systems. From our results, we

found that the Alamouti scheme does improve performance of IEEE 802.11 ad hoc networks,

especially in environments where multipath fading effects are severe. In addition, we found

that as the number of receive antennas increase, the relative gains in performance decrease,

being limited by the degree of contention in the network. For this reason, there is an inherent

trade-off between performance and system complexity when choosing the appropriate number

of receive antennas.
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Chapter 9

Conclusions and Future Work

9.1 Conclusions

In this dissertation, we have introduced a new modeling framework for the analyt-

ical study of MAC protocols in wireless ad hoc networks. The modeling framework focuses

on the interactions between the PHY and the MAC layers, and on the impact that each node

has on the dynamics of every other node in the network. To account for the effects of both

cross-layer interactions and the interference among all nodes, a novel linear model is intro-

duced with which topology and PHY/MAC-layer aspects are naturally incorporated in what

we define as interference matrices. A key feature of the model is that nodes can be modeled

individually, i.e., it allows a per-node setup of many layer-specific parameters. Moreover, no

spatial probability distribution or special arrangement of nodes is assumed; the model allows

the computation of individual (per-node) performance metrics for any given network topology

and radio channel model.
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Because of the importance of the IEEE 802.11 in the development of current and

future wireless ad hoc networks, we illustrate the applicability of our analytical modeling

framework through the modeling of wireless ad hoc networks that operate according to the

IEEE 802.11 standard. To accomplish that, we presented a comprehensive analytical modeling

of the operation of the IEEE 802.11 DCF MAC, for which we derived many performance

metrics of interest, such as delay, throughput, and energy consumption.

The proposed modeling framework constitutes a tool for a fast, accurate, and effi-

cient evaluation of a node’s performance for any system parameter value and topology of an

ad hoc network. Attempting to characterize a node’s performance only by simulations would

require considerable computational effort, specially when scalability is one of the main con-

cerns. To be able to draw general conclusions, simulations would have to be run for a very

large number of network sizes and topologies. Furthermore, if we are interested in evaluating

the impact of a single parameter to a node’s service time, for instance, simulations would have

to be repeated for each parameter value of interest.

Our model was validated through discrete event simulations using the popular Qual-

net tool, and the analytical results showed a striking correlation with the results obtained via

simulation. The importance of the analytical model is that the time needed to obtain the de-

sired results takes a very small fraction of the time required to obtain the same results via

discrete-event simulations.

We applied our modeling framework to ad hoc networks in which systems of multi-

ple antenna elements are used in both ends of the wireless links. We provided the first analyt-

ical modeling of wireless ad hoc networks that considers the impact of realistic antenna-gain
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patterns on network performance. As such, our modeling approach allows the study of ad hoc

networks in which nodes are equipped with directional antennas, i.e., systems of antennas

that are able to transmit/receive energy over intended directions, as opposed to omnidirec-

tional antennas, which (ideally) radiate or absorb energy equally well along all directions.

This modeling capability stands out from all previous analytical models, which have only

dealt with omnidirectional or over-simplified antenna gain patterns, and which have not ad-

dressed the specific mechanisms of the medium access control (MAC) protocols used (e.g., the

backoff mechanism). We modeled the directional virtual carrier sensing (DVCS) [114] pro-

tocol to validate our analytical model and show its applicability. Our numerical results show

that our new analytical model predicts the results obtained via discrete-event simulations very

accurately, and does it with a processing time that us orders of magnitude faster than the time

required by simulations. Furthermore, we show that the simplistic “pie slices” used in prior

analytical models for antenna patterns over-estimate the throughput of the protocols dramati-

cally compared to the results obtained using realistic antenna patterns.

In addition, we presented the first analytical model for wireless ad hoc networks

in which nodes are equipped with multiple-input multiple-output (MIMO) radios and use

space-time coding (STC). In particular, we considered the space-time block coding (STBC)

technique known as the “Alamouti scheme.” We derived the effective signal-to-interference-

plus-noise density ratio (SINR) of the Alamouti scheme and closed-form expressions for its

symbol error probability under different modulations. The impact of the Alamouti scheme on

IEEE 802.11 ad hoc networks was studied using our analytical modeling framework and the

new analytical model for the IEEE 802.11 DCF MAC we introduced in this thesis. We studied
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the performance of the Alamouti scheme in IEEE 802.11 ad hoc networks by comparing the

relative gains in performance between SISO, MISO, and MIMO systems. From our results, we

found that the Alamouti scheme does improve performance of IEEE 802.11 ad hoc networks,

especially in environments where multipath fading effects are severe. In addition, we found

that as the number of receive antennas increase, the relative gains in performance decrease,

being limited by the degree of contention in the network. For this reason, there is an inherent

trade-off between performance and system complexity when choosing the appropriate number

of receive antennas.

9.2 Future Work

The analytical modeling framework introduced in this dissertation can be extended

in many ways to address important questions and aspects of wireless ad hoc networks.

In this dissertation, we focused on the interactions between the PHY and the MAC

layers. Nevertheless, the introduced modeling framework can naturally accommodate the im-

pact that other layers of the protocol stack may have on the behavior of a given MAC protocol.

This is because we modeled the MAC behavior as a function of a vector ϕi used by a par-

ticular MAC protocol. According to our modeling framework, the entries in the vector ϕi

represent probabilities of events “whose outcomes are important input and/or feedback infor-

mation to the operation of the MAC protocol in place.” Consequently, the impact of any layer

of the protocol stack can be represented, in principle, by any entry in the vector ϕi. In this

case, the challenge in the modeling problem consists of choosing the appropriate functions

that faithfully represent the behaviors of the protocol layers we are interested in investigat-
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ing and, possibly, their dependencies on the scheduling rates of all nodes in the network, as

represented by the functions νik in Eq. (5.9). As future work, the modeling framework can

be extended to incorporate the impact of network routing operations (network layer) or the

impact of transport-layer protocols, such as the transport control protocol (TCP) used in the

Internet and its variants designed for ad hoc networks.

Given that the PHY and the MAC layers play such a fundamental role in the perfor-

mance of any wireless ad hoc network—and because all other layers in the protocol stack rely

on the PHY/MAC performance—the focus on the modeling of PHY/MAC-layer interactions

deserves a study on its own, and it should be fully exploited in the design and optimization of

wireless ad hoc networks. In fact, contrary to wired networks and the Internet, it has become a

common belief that cross-layer designs would largely benefit wireless networks, especially at

the PHY and MAC layers [32,106,140]. In this respect, the modeling framework introduced in

this dissertation constitutes a suitable platform for such studies, as it focuses on PHY/MAC-

layer interactions and represents the PHY/MAC functionalities by taking into account the

impact of all nodes in the network. Therefore, by using our analytical modeling framework,

we can assess not only the performance of realistic PHY/MAC cross-layer designs, but also

the impact that different PHY/MAC parameters have on network performance. Chapters 7 and

8 illustrate well the type of modeling and performance analysis that can be carried out with

respect to different choices in the design of PHY and MAC layers.

Following a cross-layer design approach, an important direction for future work is

the extension of the work on MIMO ad hoc networks presented in Chapter 8 to the modeling of

ad hoc networks that utilize space-time coding techniques that exploit spatial multiplexing to
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obtain multiplexing gains (also referred to as capacity gains). In this dissertation, we explored

a space-time coding technique that is based on a transmitter diversity scheme, whose main

goal is to combat multipath fading. As showed in Chapter 8, impressive gains in throughput

can be achieved under severe multipath fading as we increase the number of receive antennas.

Unfortunately, increasing the number of antennas does not lead to a linear increase in network

throughput. The idea of using space-time coding techniques that explore spatial multiplexing

is due to the fact that these techniques attempt to achieve the capacity gains promised in the

theory of MIMO channels, i.e., capacity can increase linearly with the number of antennas [53,

56]. Therefore, an important extension of our modeling work is to incorporate the modeling of

space-time coding techniques that exploit spatial multiplexing. In fact, a fundamental design

question in MIMO systems is whether one should use multiple antennas to obtain diversity

gain, multiplexing gain, or both [56]. The diversity/multiplexing tradeoff has been studied

extensively in the literature [51, 142, 148], but not in the context of ad hoc networks and their

interactions with different MAC protocols. Therefore, our analytical modeling framework

can be used to investigatd the advantages and disadvantages in the choice of different space-

time coding techniques when applied to ad hoc networks with specific MAC protocols under

different radio-channel conditions.

Another important aspect that is related to the PHY layer is the investigation of

radio-channel propagation models that allow the modeling of ad hoc networks under more re-

alistic scenarios, such as the use of propagation models that take into account the 3-dimensional

topology aspects of a terrain and their respective impact on symbol error probabilities of dif-

ferent modulation schemes.
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In this dissertation, we showed the application of our analytical modeling frame-

work in the modeling of IEEE 802.11 ad hoc networks. The IEEE 802.11 DCF MAC uti-

lizes a variant of the popular carrier-sensing multiple access (CSMA) scheme [73], which is

a contention-based MAC protocol. In contention-based MAC protocols, some random ac-

cess scheme is employed as a mechanism to grant nodes access to the available channel(s).

Hence, contention-based MAC protocols are, inherently, probabilistic systems. Consequently,

we can use our modeling framework to model this class of MAC protocols and its variants.

In addition, our modeling framework can also be used in the modeling of scheduled-based

MAC protocols. Scheduled-based MAC protocols attempt to prearrange or negotiate a set of

timetables for nodes to have access to the channel. As it is well-known, optimal solutions

for channel access scheduling in ad hoc networks (in the sense of multihop networks) often

results in NP-hard problems [37, 40, 98]. Consequently, proposed solutions to channel access

scheduling must rely on some type of heuristic that leads to sub-optimal solutions. It turns out

that many of the proposed solutions for scheduled-based MAC protocols are based on the as-

sumption that ad hoc networks can be treated as simple graphs [28,37,97]. As we discussed in

this dissertation, interference in ad hoc networks can happen from every node in the network

and, consequently, the view of an ad hoc network as a “graph that interconnects neighbors”

is misleading, and it does not reflect what really happens under a radio-based channel. More-

over, many of the proposed solutions for scheduled-based MAC protocols either employ some

sort of “election scheme” based on some probabilistic function [7,8], or employ the exchange

of messages (handshakes) to resolve scheduling conflicts [116, 149]. Consequently, due to

the random behavior of the proposed election schemes and the propagation effects of radio
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channels, all such MAC protocols can be modeled according to a probabilistic framework.

Last, but not least, even if optimal channel access scheduling was feasible, the radio channel

propagation effects are random in nature and, consequently, unsuccessful frame receptions

can happen at the intended receiver. Therefore, even under perfect channel access scheduling,

acknowledgments (ACKs) are expected to be sent to guarantee that a frame is successfully

received at the intended receiver (MAC-level reliable delivery service). In this case, again,

we need to deal with probabilities of successful frame exchanges, which could be treated

according to the framework introduced in this dissertation.

Based on previous considerations, an interesting venue for future work is the ap-

plication of our modeling framework in the modeling of scheduled-based MAC protocols and

their performance evaluation compared to the class of contention-based MAC protocols. It has

been shown that scheduled-based MAC protocols perform generally better than contention-

based MAC protocols. However, such performance comparisons have been done based on

unrealistic assumptions regarding the PHY layer and other network aspects (e.g., assumptions

on accurate knowledge of complete network topology or the two-hop neighborhood). To

date, the literature still lacks a fair comparison between both class of protocols that takes into

account the underlying radio channel propagation effects and the possible inaccuracies (and

intrinsic delays) of scheduled-based MAC protocols on acquiring key information, such as

(complete or partial) network topology, as an example. In this sense, our modeling framework

could be used to assess the true advantages/disadvantages of both class of MAC protocols in

ad hoc networks.

A characteristic of the modeling framework introduced in this dissertation is that
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nodes are assumed to be static in the terrain, i.e., there is no mobility. In spite of this con-

straint, some of the most important applications envisaged for ad hoc networks deal with static

networks. This is the case of many applications for sensor networks (which can be viewed as

special types of ad hoc networks), and the so-called wireless mesh networks, which are a fast-

growing emerging technology that is regarded as a flexible and low-cost extension to wired

infrastructure networks [3, 14]. Therefore, our modeling framework can be used in the study

of specific PHY/MAC-layer designs tailored to these types of networks. In particular, the

sufficient conditions for feasible network configurations provided in Chapter 5 can be used in

the dimensioning and optimization of network scenarios typical of these classes of wireless

ad hoc networks.

Regarding the modeling of IEEE 802.11 ad hoc networks, some directions for future

work include the design of an analytical model that is able to incorporate the two retry counters

of the IEEE 802.11 DCF MAC. As discussed in Chapter 6, the dynamics of the two retry

counters may have an impact on the fairness of the IEEE 802.11 DCF MAC and, consequently,

on the accuracy of the analytical model. Hence, a faithful model of the IEEE 802.11 DCF

MAC should contain both retry counters. Parallel to this, the modeling of the IEEE 802.11

DCF MAC can be improved if an investigation of the fundamental reasons for the fairness

issues typical of the IEEE 802.11 DCF MAC can be incorporated directly into the analytical

model.

Another topic that deserves special attention with respect to the IEEE 802.11 is

the modeling of its energy consumption in multihop ad hoc networks when physical layer

aspects are taken into account. In this dissertation, we only dealt with the modeling of en-
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ergy consumption in single-hop networks under ideal conditions. The investigation of energy

consumption in multihop scenarios may lead to a better understanding of the appropriate se-

lections of power/rate settings under different channel conditions [91, 94], and may lead to

innovative power-saving mechanisms for the IEEE 802.11 DCF MAC.

For completeness, a very challenge problem is that of modeling IEEE 802.11 ad

hoc networks under non-saturation conditions. Real networks are generally expected to op-

erate under non-saturation conditions (nodes may not always have packets to be sent). To

accomplish that, we need to extend the modeling of the IEEE 802.11 DCF MAC to incorpo-

rate its behavior when no packet is available at the head of a node’s input queue. In this case,

we need to obtain not only the appropriate model for the IEEE 802.11 DCF MAC under non-

saturation conditions, but also the development of the respective performance metrics, such as

throughput and average delay.

Last, but not least, another important venue for future work is the study of network

capacity under specific PHY/MAC layers. To date, the majority of the work on network

capacity follows the seminal work by Gupta and Kumar [59], which makes rather general

assumptions about the PHY and the MAC layers (especially the MAC layer). In spite of the

importance of such studies, a gap still remains on the study of capacity of networks under

specific PHY and MAC layers, and the impact that relevant PHY/MAC-layer parameters may

have on network capacity. We believe that our modeling framework allows the study of not

only network capacity under the perspective of scalability laws for specific PHY/MAC layers,

but it also provides a framework for network optimization and network dimensioning based on

the sufficient conditions for feasible network configurations provided in Chapter 5.
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